Posts

PA FrackFinder Screenshot

Pennsylvania FrackFinder Data Update

We’re excited to announce the 2015 update to our Pennsylvania FrackFinder data set! Using the USDA’s most recent high-resolution aerial imagery for Pennsylvania, we’ve updated our maps of the state’s drilling sites and wastewater impoundments. Our revised maps show Pennsylvania’s drilling sites and wastewater impoundments as of Fall 2015.

Our previous Pennsylvania FrackFinder project identified the location of active well pads in imagery from 2005, 2008, 2010 and 2013. We are pleased to add the 2015 update to this already rich data set.

The goal of our FrackFinder projects has always been to fill the gaps in publicly available information related to where fracking operations in the Marcellus and Utica Shale were taking place. Regrettably, there are often discrepancies between what’s on paper and what’s on the landscape. Permits for individual oil and gas wells are relatively accessible, but the permits are just approvals to drill: they don’t say if a site is active, when drilling and fracking began or ended, or if development of the drill site ever happened at all.

We compared permit locations against high-resolution aerial imagery from the USDA’s 2015 National Agricultural Inventory Program (NAIP) to determine whether drilling permits issued since the close of our last Pennsylvania FrackFinder project in 2013 were active. There were more than 4,500 drilling permits issued in Pennsylvania during our study period (May 1, 2012,  to September 30, 2015), many of them located quite close together. Ultimately, we ended up with roughly 2,000 unique ‘clusters’ of drilling permits to investigate and map.

We look forward to seeing how the public will use these revised data sets. We hope researchers, NGOs and community advocates can use these unique data sets to gain a better understanding of the impact of fracking on Pennsylvania’s environment and public health.

A Closeup Look at Leasing and Drilling: Allegheny County, Pennsylvania

Up to this point, Allegheny County in southwestern Pennsylvania has been mostly spared from much of the fracking boom spanning that state. This may change however, as oil and gas companies have been systematically leasing property around the county for potential drilling.  Usually it’s hard to get a handle on the magnitude of this threat, since leases on private property are generally difficult to discover.  Fortunately for the public (us included), our friends at FracTracker Alliance built the Allegheny Lease Mapping Project: an interactive online map showing land parcels leased or contracted to oil and gas companies.  Individual parcels of land that have been tied to oil and gas records can be selected to pull up a variety of information about that parcel.  Users can explore the map to see where a parcel of leased land is located relative to homes, schools, bodies of water, parks, and other sites of interest. This tool is meant to help citizens, communities and policymakers make informed decisions about zoning, land use, and future oil and gas development in the region. 

We thought it would be useful for folks to see where all the oil and gas leases are in the county, relative to the Marcellus Shale gas drilling and fracking that has already happened.  FracTracker graciously provided their dataset, and we filtered it to only show parcels tied to an “active” lease.  Here is the result.  Properties with an active lease are displayed in green. Those that have experienced some drilling activity since the Marcellus boom began a decade ago, are shown in red:

Active leases (green) in Allegheny County, PA. Active leases that have experienced some drilling activity since 2005 shown in red. Click to enlarge.

Though much of Pennsylvania that overlies the Marcellus Shale has seen extensive fracking development, most of Allegheny County hasn’t yet had any of this modern drilling with hydraulic fracturing. But the large area under lease should give residents throughout Allegheny County some concern:  a significant amount of drilling could be in their future, and drilling sites could be built uncomfortably close to where people live and work. The average size of a well pad is 3-5 acres, potentially bigger than a football field or even the deck of an aircraft carrier. In this illustration, hypothetical well pads and access roads (shown in yellow) are placed over existing leases in the northeastern portion of Allegheny County that have not yet been drilled (orange). Many of the leases come close to, or overlap with, existing residential areas:

A portion of northeastern Allegheny County showing active oil and gas leases in orange that have not yet been drilled, in an area of mixed residential, forest, and agricultural land use. Hypothetical drilling sites (“well pads”) and access roads are shown in yellow. Click to enlarge.

 

Detail from above, showing potential proximity of large industrial drilling sites to homes and a school. Click to enlarge.

In the close up above, we see that a potential well pad of typical size dwarfs the high school and football field only 1200 ft away. During drilling the neighborhoods nearby would have to cope with health, safety and lifestyle impacts associated with round-the-clock noise, heavy truck traffic, and degraded air quality, in addition to the longer-term potential for surface and ground water contamination caused by accidental leaks and spills.

It’s our hope that by making this hard-to-access leasing data easily available, folks in Allegheny County will be enabled and inspired to take action to protect their communities.  A big tip ‘o the hat to FracTracker for building and sharing the lease dataset.

Fracking: Coming to a Backyard Near You?

Last summer one of our interns, Jerrilyn Goldberg, put together an interactive story map detailing the impact hydraulic fracturing is having on the state of Pennsylvania. The map goes describes the fracking process and its associated risks, and how the growing industry is impacting local communities and the environment. She examines the proposition that switching to a natural gas dominated energy system would mitigate global warming, an important thing to consider when discussing future energy development. You can check out the story map by clicking the image below:

When thinking about fracking and its potential costs and benefits to society, it’s important to remember the impact it will have on the people living near it, not just the country as a whole. The industry touts the amount of potential energy that can be gained from a fracking well relative to its “small” footprint as a major advantage of the process over conventional gas wells and coal extraction. Wells can be permitted and drilled quickly, and with horizontal drilling a single well has access to a large area of potential gas reserves. This also means that wells can pop up at an alarming rate and fit into places that are uncomfortably close to where people live and work. Often times, these wells and their associated infrastructure are within sight and earshot of people’s homes, or even schools, hospitals, and other sensitive areas where people’s health can be put at risk by the 24/7 noise, lighting, diesel fumes, dust, and volatile chemicals emanating from typical drilling sites:

Here in western Pennsylvania we see how close fracking operations can come to people’s homes; the people living in the cluster of houses on the left have to live with the commotion around the well pads a stone’s throw away on a daily basis, and the massive fluid retainment ponds in blue could pose a threat to their health. Click on the image for a fullscreen version.

 

The story in West Virginia is very similar. Here a fracking well pad is less than a football field away from someone’s home. Click on the image for a fullscreen version.

Often times, many of the people that will be affected by a new fracking operation have little to no say in the matter. People are typically powerless to stop construction of a drilling site on a neighboring property, and don’t have any say in where and how the site and associated roads and utilities get built, even though they will still have to deal with the increased noise, light, and traffic, as well as decreased air quality. Health concerns are a major issue because fumes and volatile organic compounds (VOC’s) originating from well pads and fluid retainment ponds have been linked to respiratory and skin illnesses. Fracking operations have also been known to contaminate people’s drinking water by causing methane migration, posing an explosion hazard, and fracking fluids that have made it into the water table can render water unsafe for drinking, bathing, and even laundry. Accidents like fluid spills and well blowouts are an ever-present threat, with the potential to send thousands of gallons of fracking fluid spewing into the air and onto the surrounding landscape, as happened to a well in Clearfield County, Pennsylvania in 2010 that resulted in more than 35,000 gallons of fracturing fluid contaminating the environment. Local campers had to be evacuated from the area. 

Hydraulic fracturing has really taken off in the last decade thanks to horizontal drilling technology. Here, in this section of southwestern Pennsylvania, we can see how rapidly fracking operations have expanded near the Pittsburgh area. The colored dots show the locations of new drilling sites similar to the ones shown in the images above, identified with help from our FrackFinder volunteers.

Because of its location over a particularly rich part of the Marcellus Shale, Pennsylvania has been one of the states most heavily impacted by the fracking boom, but fracking has begun to take off in other states as well. These include Ohio and West Virginia, where along with Pennsylvania you’ve helped us investigate and map drilling activity through our FrackFinder project to quantify the growing impact of fracking in each state, and make the data available to the public and to researchers investigating the impact of fracking on public health and the environment.

Ohio sits partially atop the Utica shale. This map shows the locations of well pads built between 2010 and 2013 in a small part of the eastern portion of the state, and the access roads that were carved out to support them. Click on the image for a fullscreen version.

 

Fracking is relatively new to West Virginia, and the topography is rugged (as shown by this shaded-relief map), so well pads aren’t yet spaced as densely as they are in states like Pennsylvania. The red polygons represent well pad construction, and the dark blue represent retainment ponds. Click on the image for a fullscreen version.

If you’d like to learn more about fracking and how it impacts people and the environment, be sure to check out Jerrilyn’s story map for an in-depth look!

 

Fracking, Mountaintop Mining, and More…My Summer at SkyTruth

 Hi, my name is Jerrilyn Goldberg.  Over the course of  two months last summer I worked as an intern at SkyTruth. In September I started my junior year at Carleton College in Northfield, Minnesota, majoring in environmental studies and physics. Over the course of my internship I contributed to SkyTruth’s Mountaintop Removal (MTR) research by creating a mask to block out rivers, roads, and urban areas that could be confused with mining activity by our analytical model. I also helped classify many of the ~1.1 million control points that allow us assess the accuracy of our MTR results.

To analyze the accuracy of the MTR results we obtained through our Earth Engine analysis, we dropped 5,000 randomly distributed points at each of 10 sample areas for each year between 1984 and 2016. These points were manually classified as being `mine` (if it overlapped a user IDed mine location) or `non-mine` (if it overlapped anything other than a mine). A subset of those manually classified points were then used to assess the accuracy of the output from our Earth Engine analysis

In addition to the MTR project, I created a story map illustrating the development of Marcellus Shale gas drilling and hydraulic fracturing (fracking) in Pennsylvania, and discussing the environmental and public health consequences fracking is having on some rural Pennsylvania communities. Check it out here. Through my research for the story map, I learned about the hydraulic fracturing process. I also learned about many of the political and social complexities surrounding the fracking industry in Pennsylvania, including conflicts between economic and community interests. Our goal with this story map is to present an accessible and accurate narrative about the fracking industry in Pennsylvania, which begins with understanding what’s actually going on now.

Click the image above to visit Jerrilyn’s interactive story map.

I started by learning about SkyTruth’s FrackFinder Pennsylvania data and methodology from the 2013 project. I read through our GitHub repository and figured out why the FrackFinder team chose their methodology and what the results represented. (While I was familiar with the general concept of the project, I did not know much about the specifics beforehand.) With this in mind, I set out to update the dataset with well pads built after 2013.

 

I quickly realized that this task presented many questions such as, which of the many state oil and gas datasets actually contained the information I sought. I selected the Spud Data, which contains all of the individual locations where operators have reported a drilling start-date for a permitted well. I filtered to include only unconventional horizontal wells drilling for natural gas and excluded those reported as ‘not drilled.’ To account for some missing drilling locations which I noticed while reviewing the latest Google base map imagery, I also download the Well Inventory Dataset which includes all permitted oil and gas wells along with their status. From here I filtered out all the spuds and wells not listed as drilled in 2014, 2015, or 2016 and joined the files. After joining the layers, I formed a well pad dataset by creating a 150 meter buffer around the wells, dissolving overlapping areas, then locating the centers of each buffer. This step effectively says ‘create a 150 m radius circle around each point, but when these overlap, clump them into one circle, then find the center of that new circle.’ Finally, I found all the buffers that overlapped with FrackFinder drilling locations from 2013 and earlier, and eliminated all of those centroids.

A quick note about the imagery: USDA collects high resolution aerial imagery as part of the National Agriculture Imagery Program (NAIP), which at the time of my project was last collected for Pennsylvania in 2015. While I worked hard to eliminate inaccurate points, I was unable to verify all of these with the existing NAIP imagery. That said, I found that the other points accurately represented the general well pad locations and thus chose to include the points for the first half of 2016, even though I obviously couldn’t verify the existence of those recent drilling locations on the mid-summer 2015 NAIP imagery.

 

At the same time I found The Nature Conservancy’s (TNC’s) 2010 Energy Impact Analysis, which looked at the predicted development of wind, shale gas, and wood fuel usage in Pennsylvania. Part of TNC’s study identified three construction scenarios for how many wells and well pads could be built in Pennsylvania by 2030. With an assumption that 60,000 new wells would be drilled between 2010 and 2030, the study predicted between 6000 and 15000 new well pads would be built to host those wells. Each scenario featured a different distance between pads and a different number of wells per pad (because that number stays constant at 60,000 new wells). I found some data from TNC’s study hidden on an old SkyTruth backup with help from Christian and David. With the FrackFinder data, my update, and the ‘informed scenarios’ in hand, I started trying to figure out an appropriate way to synthesize the three datasets, to identify which TNC drilling scenario best fits what is actually happening..

 

One roadblock in conducting a thorough analysis and comparison was that TNC’s research makes a quantitative prediction about the possible volume of infrastructure development instead of a more tangible spatial prediction. The study distributes the predicted numbers of new well pads across the counties of Pennsylvania, which overlay the region of Marcellus Shale with ideal conditions for hydraulic fracturing for natural gas. All of the included counties now contain at least one well pad. I did notice that since 2010, about 1/3 of the well pads estimated by the low impact scenario (6000 well pads) have already been constructed. If the rate of development between 2010 and 2016 remains constant, Pennsylvania will surpass TNC’s low impact scenario.

An example of The Nature Conservancy’s “low” impact scenario for fracking well construction across a section of Pennsylvania.

The Nature Conservancy’s medium impact scenario for future fracking well construction across a section of Pennsylvania.

The Nature Conservancy’s high impact scenario for future fracking well construction over a section of Pennsylvania.

 

Fracking Pennsylvania” uses maps and other media to create a narrative of hydraulic fracturing and its consequences. While originally intended for the community members we work with in southern Pennsylvania, I hope this story map becomes a useful tool for many different communities grappling with fracking.

 

While I have my time in the Watchdog spotlight, I want to publicly thank everyone here for welcoming me into the awesome world of SkyTruth. I’m so grateful for the learning opportunities I had last summer and for all of the support I received. Special thanks to Christian for introducing me to SkyTruth and to John for helping me improve my Story Map even though he is definitely one of the busiest people in the office. I look forward to sharing my experience through the Carleton Internship Ambassador program this year.  

Inside a Hotspot: A Timelapse of Shale Drilling in Pennsylvania

Earlier this month we published a map of active Marcellus shale wellpads in Pennsylvania as observed on aerial survey imagery from 2005, 2008, 2010, and 2013 by our FrackFinder citizen scientists. Now we thought we’d take a closer look at one of those hotspots of drilling activity, specifically an area in Washington County, PA near Cross Creek County Park and the town of Hickory. 

For this visualization, we created a 3.4 acre buffer around each active wellpad, a number we derived from our related work mapping the footprint of wellpads in Eastern Ohio. We have not yet measured the cumulative footprint of drilling activity in Pennsylvania, so we used the median area for wellpads in Ohio’s Marcellus and Utica shale play. 

However, the impact of drilling is not just restricted to the gravel parking lot around a wellhead, it extends to service roads, pipelines, waste impoundments, gas separators, compressor stations, etc. So to visualize that impact, we have also included a snapshot of the aerial survey imagery for the same area from each of the respective years. 


These visuals are cumulative, meaning that not every wellpad was visibly active at the time of the aerial survey. However, given the predicted lifespan of shale wells we can expect that almost all of these sites could be expanded and re-fracked several times over the coming decades. If you want to take a closer look you can download high-resolution stills from our album over at Flickr or explore the interactive map of all observed, active wellpads in Pennsylvania. 

This kind of dense drilling activity in close proximity to homes and towns is cause for serious concern with recent findings by our partners at Johns Hopkins who found that “expectant mothers living in the most active area of fracking drilling and production activity were 40 percent more likely to give birth prematurely (before 37 weeks of gestation).” Our goal with these maps and mapping projects is that the resulting data will be used to better understand the public health and environmental impacts of resource extraction activities like fracking.