A look back at 20 years of oil and gas permitting in Wyoming

A shift in priorities of the EPA under the current administration has raised awareness of an increase in oil and gas permitting across the USA. However, the increase began before the current administration. Although the federal government controls most regulations and laws that affect permitting, other factors such as global oil and gas prices, advances in drilling and production technology, and state governments’ willingness to accommodate investors have an effect on permitting and investment by energy companies. It should be pointed out that permitting does not necessarily indicate drilling as companies can request permits but then hold on to the permits until either eventually drilling, requesting a new permit, or selling the permit to another company. This can tie up land for decades and is covered in more detail by The Wilderness Society’s report: “Land Hoarders: How Stockpiling Leases is Costing Taxpayers”.

Wyoming has an economy that is built on coal and oil, but in the 80s and early 90s it was suffering from an oil glut that caused prices to drop. As prices began to recover throughout the 1990s and 2000s and eventually boom (Fig.1), some companies sought to diversify into natural gas (read more in James Hamilton’s paper “Causes and Consequences of the Oil Shock of 2007-08). Many began to drill for gas in the coal fields of Wyoming, and to apply the relatively new technology of hydraulic fracturing (“fracking”) to extract natural gas from previously uneconomic, low-permeability sandstone and shale reservoirs found throughout the Rocky Mountain West.

Oil and gas prices since 1985.

Figure 1. Oil and gas prices since 1985.

The oil and gas boom ended abruptly in 2008 when the effect of the global financial crisis reached the oil and gas markets and prices plummeted.

To better understand the effect these events had on Wyoming, I analyzed permits for new oil and gas wells, issued by the state over the past 20 years. This data is freely available from the Wyoming Oil and Gas Conservation Commision website: http://wogcc.wyo.gov/. First, I should point out that this data has inconsistencies and holes, due to apparent data entry errors like missing or incorrect dates, missing latitude or longitude, typos, etc. Unfortunately, this meant nearly 24% of the total permits had to be left out of my analysis. Some errors still remain, as seen in this map of permit applications received by the state (Fig. 2). Each county is colored differently and there appear to be some permits which either have the wrong county listed or incorrect map coordinates.

Distribution of oil and gas drilling permit applications, color coded by county.

Figure 2. Distribution of oil and gas drilling permit applications, color coded by county.

What immediately stands out is the relatively densely-packed permits in Campbell county, in the north-east of the state. When I looked closer at this county over time, I saw that most of the permit applications were submitted during the beginning of the boom of 1998-2008. This is quickly followed by a sharp drop around 2000, the time hydraulic fracking made drilling in other parts of the state (and country) more profitable. The original method of coal bed methane drilling was considered uneconomical compared to this new fracking method. At that time, I saw a rise in permit applications across other counties (Fig. 3), but far more subdued than the earlier rush, possibly because fracking made deposits across the country viable and so the increase was more widespread across and outside Wyoming. This is just a theory though, these could easily be due to business strategies of companies “capturing” land before their competitors.

Applications for oil and gas drilling permits received over time by county.

Figure 3. Applications for oil and gas drilling permits received over time by county.

The rate of permit applications slows for all counties as the boom ended around 2008 with a short-lived rise leading up to 2016. The boom and bust periods can be seen more clearly when I looked at the overall quantity of permit applications across Wyoming (Fig. 4).

Total number of oil and gas drilling permits applied for in Wyoming.

Figure 4. Total number of oil and gas drilling permits applied for in Wyoming.

The initial rush of the boom was followed by a dip and second climb as fracking technology took off. This is followed by the bust of 2008. There is a slight rise again around 2016, but it drops off by 2017. The effect of this activity is closely reflected in unemployment figures for the state (Fig. 5). Considering that I am looking at permitting however, and not drilling, this correlation should be seen as a reflection of oil and gas companies’ business activities in a holistic sense.

Unemployment rate for Wyoming over the past 20 years.

Figure 5. Unemployment rate for Wyoming over the past 20 years.

Initially, there’s an overall steady decline in unemployment as the boom sweeps up employees but this rockets up once the bust comes along. Interestingly, between 2012 and 2016, there is a steady rise in permit applications which is reflected by the steady drop in unemployment but this is interrupted by a bump in unemployment around 2016. The restoring of the unemployment level after 2016 is not reflected in the drop in permit applications, however. Those appear to drop off.

Although there are booms and busts, the overall number of well permits is constantly increasing (by simple fact of the number of new permits applied for always outweighing the number of permits expiring). The animated image below (Img. 1) shows the growth of oil and gas permit applications as companies move across the state.

Image 1. Permits applied for over the past 20 years.

Image 1. Permits applied for over the past 20 years. (Click to see time-series)

Graphs and maps give us a good idea of the trends but sometimes it is even more helpful to see the physical reality of these numbers.  This is an area in the most heavily permitted county, Campbell (Img. 2).

Image 2. Comparison of an area of Campbell county from July 1999 to July 2018.

As well as the dramatic increase in well pads (i.e., drilling sites), these images show the addition of access roads threading across the landscape.

What this data doesn’t show is the large amount of orphaned wells that were left behind after the price of oil and natural gas dropped in 2008. This has left a legacy of about 3600 abandoned wells (scroll to bottom for total number of orphaned wells currently tracked by Wyoming Oil and Gas Conservation Commision). Often the state, and therefore, the taxpayers, are left to handle this burden because the responsible companies are either unknown, unable to cover the cleanup costs, or have declared bankruptcy and disappeared. Understandably, the state would prefer to see the wells operate once more rather than paying considerable amounts of money to seal them up and restore the land. But these aging, unsecured wells pose a threat to the environment and to public health.  

Many of the coalbed methane wells built at the beginning of the boom were approved with permission to dump untreated “flowback water” on the surface. The companies convinced the state that this  fluid, coming straight from the coal seams targeted by the drilling, would be beneficial for the parched land even though most of the untreated fluid was highly saline. Also, the effect of flooding the land with large volumes of water was extremely unnatural to the existing ecosystem. Many areas that were normally good for grazing became unusable because they were flooded with this salty water. Land that was adapted to little rainfall and snowmelt was suddenly exposed to a constant flow of brine. The companies pushed the idea of plentiful of water for agriculture and wildlife to drink while downplaying the issue of the quality of the water. The state also towed this line while court battles challenging the “beneficial use” permits, led by landowners and conservation groups, were upheld in court. Eventually, they implemented a water-to-gas ratio cap on surface discharges since many of the wells were producing plenty of salty water but little or even no gas at all.

One other trend that I discovered while scrutinizing the permit database was the time it took to process these permits (Fig. 6 & 7). Plotting permit approval times at first appears to show a distribution that follows the general trends that I’ve seen so far, tracking the boom and bust periods. For comparison, I plotted these for both the year of permit application (Fig. 6) and year of approval (Fig. 7).

Figure 6. Permit approval time arranged by year of application.

Figure 6. Permit approval time arranged by year of application.

 

Figure 7. Permit approval time arranged by year of approval.

Figure 7. Permit approval time arranged by year of approval.

The red lines track the annual average wait time and give a clearer picture of the trend. The spread of wait times fluctuate far more than the actual average wait time. Although the average does not appear to fluctuate much, the scale is a little deceptive as the average wait time extends from 15 days in 1998 to 40 days in the year 2000. The average wait time appears to initially rise with the start of each drilling boom but even out fairly quickly. This changes later when the average wait time climbs sharply around 2013. By 2017, the average wait time has increased considerably to 130 days.

These trends offer insight into the recent history of oil and gas permitting activity in Wyoming. It should be noted that although there was a lot of ‘noise’ in the data that I had to correct or discard, the remaining data helps give me a clearer sense of how oil and gas development is driving change on Wyoming’s landscape. My analysis has been based purely on the history of permitting in Wyoming, not actual drilling. For an analysis on drilling, please look at the Fracktracker Alliance’s page on oil and gas activity in Wyoming. I hope you’ve enjoyed this breakdown of permit data for Wyoming. I hope to take a similar look at other states’ drilling permits, so stay tuned!

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Signs of oil from the SSL Kolkata

Followers of our work will recall the merchant vessel SSL Kolkata that was being towed by the Indian Navy after catching fire on June 13th off the Sundarbans in the Bay of Bengal.  The Indian Navy had to abandon the ship after a series of explosions and it has been stuck in shallow water ever since. There have been concerns that the 400 tonnes of heavy fuel oil might start leaking as the ship is listing and cracks are developing. The Sundarbans are the world’s largest collection of mangrove forests and a Unesco World Heritage site (https://whc.unesco.org/en/list/452), and a major oil spill here could be devastating. We see indications in this Sentinel 1 radar satellite image from July 17 that this is a legitimate concern: there appears to be a 17km slick coming from the vessel, being pushed by the strong currents from the Ganges Delta.

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Considering the volume of oil onboard, the slick on July 17 is far smaller than what we would expect if there were a serious leak. This Sentinel 2 multispectral image from the 19th has also captured the slick. Though it doesn’t give us a complete image of the slick as a radar image would (due to interference from the clouds and cloud shadows), we do get an idea of how the slick is spreading not just south, but also north toward the Delta.

Oil slicks seen in Sentinel 2 imagery taken two days later on July 19.

Oil slicks seen in Sentinel 2 imagery taken two days later on July 19.

Attempts have been made to salvage the ship but were abandoned after cracks developed and the ship started listing. Now that the fuel tank is underwater, they will need to suck the oil out carefully using a method known as “hot tapping.” Although poor weather has delayed these plans, we have observed one tugboat, the Lewek Harrier, visiting the site as recently as the 19th according to its Automatic Identification System (AIS) signal. Though we couldn’t definitively identify the vessel visible in this image at the time it was collected, the Lewek Harrier was the only vessel that was broadcasting AIS in the area on that day. The MCS Elly II has also been operating in the area though we haven’t seen it in any images.

[ Image 3 ]
This vigilant tug, the Lewek Harrier, has been a regular visitor.

This vigilant tug, the Lewek Harrier, has been a regular visitor.

We hope this means an end to this leak and that the extent of the spill will be limited. We will continue to watch this area closely as there is still a real threat to the nearby Sundarbans.

You can find more info on the cleanup here. 

You can find more info from when the containers began slipping off the ship here

Pretty Parallax Planes

While scanning the European Space Agency’s (ESA) Sentinel-2 satellite images for signs of the Sanchi oil slick, I came across an unusual sight of what appeared to be three, brightly-colored aircraft flying in tight formation. I’m not enough of a GIS rookie to be fooled into thinking China’s latest stealth jets were malfunctioning, what I was observing was a single aircraft’s image split into three spectral bands of red, green, and blue.

This flight was snapped by Sentinel-2 on its way to Tokyo (flight data from Flightradar24.com).

To explain why this happens, we need to take a look at the source of these images: Sentinel-2’s MultiSpectral Instrument (MSI) sensor. This can be thought of as a very advanced camera that can see beyond the usual visual spectrum and into the near-infrared (great for monitoring vegetation) and shortwave infrared. Instead of just one sensor in a camera, the MSI sensor has 12 in a row. For a more technical explanation, take a look at ESA’s guide on the MSI sensor here. Imagine a push-broom with 12, wide bristles and you’ll have an idea of how these sensors sweep across the Earth as the satellite flies overhead. Each sensor splits the image into 10 different spectral bands using a stripe filter which means not only is each band detected at a slightly different angle, they are also detected at slightly different times. What this means for an image like the one above, a “true color” composite made up of the MSI’s red, green, and blue bands, is that when the bands are combined, an assumption has to be made about how far away the object is to correct for the parallax and “focus” the image on the target — and for earth-observation systems like Sentinel, the target is the surface of the earth. An element of parallax is factored in when we combine the bands in the same way that our brains adjust for the parallax of the different angles our eyeballs are seeing. This is called orthorectification. For an example of this, hold your finger halfway between this screen and your face and focus on these words. As well as being a bit blurry, you should be seeing more than one finger. In the same way, the RGB bands are combined with the focus on the surface of the Earth so an aircraft at a higher altitude splits into three images, one for each band. Since this Airbus A321 was cruising at an altitude of about 33,000 feet, the aircraft’s position was projected onto the Earth’s surface resulting in three different images, one for each of the bands.

The time difference between when each band is detected also adds to the offset. This isn’t noticeable for stationary or slow-moving objects but an aircraft is moving fast enough to see a difference. In the image we found, the aircraft’s speed, about 550kts (according to Flightradar24.com), is probably the biggest cause of the shift between images but if you look closely at the contrails, you can see some sideways drift between the first and last image of the plane. The image below, from just off the east coast of Bulgaria, better highlights the two effects of the forward motion of the aircraft and the sideways shift due to parallax.

Example of parallax off the east coast of Bulgaria.

If we really wanted to fix the aircraft’s image, we would need to adjust for the parallax at that distance as well as the delay between each band’s detection (to account for the aircraft’s speed). The result would be that the aircraft would now be one, complete image but everything else would be a multicolor mess.

For more info on this effect, check out this post by Tyler Erickson, or some direct information from the European Space Agency (skip to chapter 2.5).

U.S. Secretary of State John Kerry looks on as Paul Woods, SkyTruth CTO, demonstrates the Global Fishing Watch interface. Credit: Franz Mahr, Oceana

Read our Annual Report for an Overview of Our Environmental Impact

Together with partners from around the world, SkyTruth uses the view from space to motivate people to protect the environment. SkyTruth is committed to transparency in all things. In the spirit of that, we wanted to share our annual report with you which covers the impact we’ve been able to have as a watchdog, innovator, and motivator for environmental good.

Global Flaring Map Reset

The wasteful practice of flaring off natural gas from oil and gas fields is again making news, coinciding with a new release of SkyTruth’s Global Flaring Map that visualizes gas flaring activity around the globe. This map relies on the Nightfire data provided by NOAA’s Earth Observation Group, which has written extensively about their work detecting and characterizing sub-pixel hot sources using multispectral data collected globally, each night, by the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi-NPP satellite. Read about the algorithm that creates Nightfire data here and methods for estimating flared gas volumes here.

SkyTruth’s enhanced map has these added features:

  • NOAA has published two additional years of flaring data, allowing our map to extend back to March 2012.
  • A location search box lets you go directly to a city, state, country, landmark, etc.
  • Date range selection helps you limit the visualization to the time-frame of interest.
  • You can identify your rectangular Area of Interest and download flaring data within that AOI (works best in Chrome browsers).
  • We’ve caught up with NOAA’s daily download after adjusting to recent changes in their web security.


About our Global Flaring Map

Please read about some of the uses for this map and how SkyTruth processes NOAA’s data in this original post describing our map. If you don’t see a flaring detection you expected to see, consider the caveats:  some flares don’t burn hot enough to be included in our dataset, they may not have been burning when the satellite passed overhead, the flare may not be frequent enough to make it past the 3 detection threshold, heavy clouds may have obscured the flare from the sensor, etc.

If you find this map useful, drop us an email at info@skytruth.org to let us know.

Why Flaring is In the News Again

In November 2016 the Interior Department announced a new Methane and Waste Prevention Rule to reduce wasteful flaring and leaks of natural gas from oil and gas operations on public and Indian lands. Although Congress tried repealing the rule after the 2016 elections, that effort failed to advance out of the Senate after a May 2017 vote.

Despite the Senate’s action to keep the methane rule, the Environmental Protection Agency just announced (as of 6/15/2017) they would suspend implementation of the rule for 90 days — an action leading environmental groups claim is unlawful.

Transshipment in the Fishing Industry Getting a Critical Look

Our collaboration with Global Fishing Watch on the problem of transshipment at sea in the fishing industry is at the forefront of a growing movement to take a critical look at this practice, which is increasingly regarded as a key driver of overfishing, and an enabler of illegal fishing and other fisheries crime including crew enslavement. Our work is funded by the Walton Family Foundation and being led by Bay-area skytruthers Aaron Roan and Nate Miller.

Some hot-off-the-presses resources on this issue:

A new Walton Family Foundation blog post on our work — How Big Data is Helping in Battle Against Illegal Fishing: Satellite Monitoring Tracks ‘Pervasive Problem’ of Global Transshipments

Just-published research concluding transshipment at sea should be banned to curb illegal fishing — Potential Ecological and Social Benefits of a Moratorium on Transshipment on the High Seas

SkyTruth collaboration with DigitalGlobe to target transshipment with high-resolution satellite imagery — Satellites Leave No Place to Hide for Rogue Thai Fishing Fleet

Worldview-3 satellite image of likely transshipment courtesy DigitalGlobe.

Oceana report — No More Hiding at Sea: Transshipping Exposed

SkyTruth + Global Fishing Watch report, map and dataset showing 5,000 likely transshipment events over four years, detected using vessel tracking data — The Global View of Transshipment: Preliminary Findings

 

SkyTruth CTO: Paul Woods

When Paul Woods moved to Shepherdstown, West Virginia, SkyTruth’s home base, he was looking to get away from the Washington, D.C. area where we had been consulting in the tech industry during the dot com boom. His goal had been to find a slower pace and a more soul-satisfying lifestyle than the world of maximizing profit margins through software development. Now, he’s setting off to help save the oceans by revolutionizing the way the fishing industry works.

As the Chief Technology Officer at SkyTruth, Paul was instrumental in bringing Global Fishing Watch into being. [You can read about that here] Now, the platform we developed for identifying and tracking every commercial fishing vessel on the oceans is spinning off into an independent non-profit organization with Paul at the helm. As the interim CEO of Global Fishing Watch, Paul will be guiding the new organization through the transition. While we’re still keeping him in the fold, we thought it was a good time to sit down for a brief reflection on his path, his time at SkyTruth and a look into what’s next.

It’s a small town, so I guess when you landed in Shepherdstown in 2001, it was only a matter of time before you and SkyTruth found each other. How did you get involved?

It’s true just about everybody in Shepherdstown knows SkyTruth. When I met John (SkyTruth President, John Amos), I was working with another company, but I did a few side projects for SkyTruth. I also joined the board as technology advisor. Then, as the other work was winding down and I was looking for the next thing, I realized I just got a lot more out of the SkyTruth stuff than I did out of creating products to maximize clicks or streamline business processes.

In 2010, when the Deepwater Horizon spill happened, I helped John set up a rapid response website. Of course the whole oil spill incident opened an opportunity for growth at SkyTruth, and I realized I could apply my skills in the stuff I really like doing directly to issues that made a real difference in the world. That kind of direct application to saving the environment is so much more satisfying than just writing a check or writing a letter to your congressman.

By 2013, I came on full time, and one of the first projects we did was SkyTruth Alerts, which is still in use today.

I’m sure it’s rewarding to see Global Fishing Watch mature into its own organization. Do you have any reflections to share as you look back at your time at SkyTruth?

Over the years I’ve been working on many different projects at SkyTruth that have been deeply rewarding to me. Now that one of those projects has gotten big enough that it requires all of my time and attention to keep it running, which is enormously exciting.

What are your hopes for the future:

Clearly my immediate hopes and dreams are focused on the continued success and growth of Global Fishing Watch. I hope to see Global Fishing Watch arrive at a long term sustainable model that will propel its growth beyond me and be wildly successful at making fishing sustainable and helping save the oceans.

Personally, I guess I’m always looking for the next thing. I’m a start-up guy. That’s what I do. It’s what I like to do, so I guess my hope is that there will be another Global Fishing Watch around the corner a few years from now —another project with the same great impact and the same great opportunity to make the world a better place, and I’ll get to be involved in it. There’s a good chance that project is in its infancy right now at SkyTruth.

If you could see any place in the world from space, where would it be?

Anyplace? Well, we have recently detected new planets only four-and-a-half light years away, and at least one of them potentially has liquid water on it. The surface of Proxima Centauri B. That’s my first answer.

Great answer. What about here on Earth. If you could aim the SkyTruth “eye” where would you aim?

What would be really fantastic to see from space would be the bottom of the ocean, the sea floor. Unfortunately we can’t do that right now, but I think that would be the place I’d want to see.