Brendan Jarrell: Mentor for SkyTruth Interns and So Much More

Being a SkyTruth intern was intimidating at first, but Brendan found support and outstanding opportunities to grow at SkyTruth. Now he helps others find their way.

Brendan Jarrell sounds a bit like a proud papa when he talks about SkyTruth interns. As we chat about how he came to SkyTruth, he says things like, “Tatianna has been excelling in her role,” and “Matthew is asking all the right questions.”  Brendan coordinates SkyTruth’s intern program, but once upon a time he was an intern himself. Now he’s on staff as a geospatial analyst, examining environmental impacts from space such as harmful algal blooms, hydraulic fracturing (fracking) and bilge dumping. He’s also serving as a mentor to new interns as they take their first, sometimes tentative, steps into their professional life.

So how did Brendan find his way to SkyTruth? As he puts it, “I’m insanely local.” Normally, Brendan works at SkyTruth’s Shepherdstown, West Virginia headquarters (but like all SkyTruth staff he’s working remotely during the COVID pandemic.) He graduated from the county high school and attended college at Shepherd University just blocks from the SkyTruth office. There, he took a Geographic Information Systems course his junior year as part of his Environmental Engineering major – “just to get my feet wet,” he says. His professor suggested he check out SkyTruth for an internship or for work. “I was vaguely familiar with SkyTruth,” he says because he lived in Shepherdstown, and because he knew SkyTruth Office Administrator Teri Biebel’s daughter. But he brushed this possibility aside at first because he didn’t have enough confidence in his abilities.

Later, at the end of his senior year, he decided he needed some hands-on job experience before graduating. By then, he had taken several remote sensing classes and was more comfortable with the technology. He realized that a SkyTruth internship was low-hanging fruit; an opportunity right in his backyard. With new confidence and real life looming beyond graduation, Brendan took the leap and applied for an internship.

Brendan, his brother, Keegan, and mother, Monique, at a Red Sox game. Photo by anonymous.

He describes his first few weeks at SkyTruth as “tumultuous, because other people are relying on you.” But SkyTruth’s Technical Program Director Ry Covington was extremely encouraging.  “Ry is calm and mellow all the time,” says Brendan. “He’s very positive about the work you are doing [first], before then telling you what to fix…he always has good advice… I really needed that – how am I doing? How am I doing?”

One of Brendan’s first projects was building an app that would allow policymakers and citizens in Allegheny County, Pennsylvania (surrounding Pittsburgh) to examine the impacts of fracking on buildings and communities, depending on how far gas wells were placed from human structures. It was a project that could affect decision making on drilling and directly impact people’s lives. He remembers Ry telling him, ”we’re going to make an app, and you can make it.”  Brendan’s face lights up with excitement just recalling the moment. At first he felt like a deer in the headlights, he says. At one point, working on the app, a problem was so confounding that he spent a week and a half working on it. Then, at 5:25 in the afternoon one day he figured it out. “I jumped out of my seat!” he says now.  He and his team developed the app, and months later, in May 2019,  (after he was hired to join SkyTruth as a staff member), he led a webinar demonstrating how to use the app that was attended by citizens and others concerned about fracking.

 “You can do as much as you want with the internship,” Brendan says about being an intern at SkyTruth, “take it as far as you want to take it.” And Brendan decided that he wanted to take advantage of it as much as possible.

 Although he changed majors several times in college, Brendan always had a passion for environmental protection. He considers it a calling; he felt a spiritual desire to do something that would make a difference for the planet.  “There is so much that is wrong,” he notes.

Now he enjoys being a mentor to interns. “I know what it’s like to be an intern” he says, and understands how it can feel overwhelming at first.

Brendan is somewhat of a mentor to his brother as well, who is nine years younger than him. They both enjoy sports, and Brendan often takes his brother to sporting events. In fact, his brother helped Brendan connect with his significant other, Amy Emert. Brendan and Amy met playing Ultimate Frisbee, but they only really connected when his brother invited Amy over to play video games.

Brendan with Amy Emert, Outer Banks, North Carolina. Photo by Aidan Dom.

 As we wrap up our conversation, Brendan concludes, “we’ve had some awesome interns over the long term.” For example, he points to the media coverage that Lucy Meyer received for discovering bilge dumping in the ocean. And even during the current pandemic, SkyTruth interns have made major contributions and learned new skills from afar.  SkyTruth plans on continuing that tradition this fall, even as the pandemic continues. If you’re interested in a SkyTruth internship, click here to learn more. 

 “It’s a part of the future of SkyTruth that I can mold,” says Brendan.  “It’s awesome and it’s gratifying to see people grow.”

On Considering The Larger World Around Us: The SkyTruth Intern Experience

Bilge dumping and more allowed Tatianna Evanisko to think big at SkyTruth.

SkyTruth seemed like a great fit. I had always been interested in data, the inductive route, experiencing things firsthand and then exploring my assumptions. I was compelled by computation as well as the natural world. Being active in environmental protection was important to me and I had always been drawn to vocations with a larger purpose; that allowed me to be visionary and have big dreams. Growing up on the tail end of the Millennial generation, I had experienced an explosion of technology, becoming what some have coined a “screenager.” Not only that, but I had grown up in the climate change generation. In recent decades we’d seen an increase in extreme weather events, environmental atrocities, and lost species. But notably, my generation also has been active in movements that strive to address these problems such as eating less meat, using alternative energy, and living more sustainably. Even at a time of climate conspiracies and fake news, several million people globally participated in the largest climate protest in history in 2019. That’s not to say I believe all that I hear. However, over time and by paying attention to environmental events occurring all over the world, I find the evidence overwhelming: the Earth is changing, and more and more people are bearing witness to it.

When I started as an intern at SkyTruth I was asked what issues I cared about to help me decide what to work on. My reaction was: everything of course! How can you ask such a thing? To a certain extent, my options were already defined: most of the SkyTruth staff were using satellite imagery, and despite the other issues we were working on, at some point we were all looking at the ocean — the eerie, non-terrestrial world — often in search of pollution, such as oil.  My work quickly became focused on searching for streaks of oil in the middle of vast oceans. Oil can appear on radar satellite imagery as a uniform dark and linear formation, called a slick. Many of these slicks come from cargo vessels and tankers that dump their untreated oily waste from the bottom of their ship (the bilge) into the ocean, an act called bilge dumping. Our team has been developing a solution that expands the capacity of SkyTruth to automate the detection of these slicks by using machine learning, a type of artificial intelligence. In a matter of months, I helped turn an empty spreadsheet into a collection of over 330 images of oil slicks — training data that we could use to “teach” computers to recognize the slicks in our prototype of a monitoring platform named Cerulean. Wow — intelligent and creative minds at work, which will soon enable anyone globally to monitor the sea to detect oil slicks with SkyTruth! 

Ocean monitoring thus became a routine event for me, and naturally I started to notice some patterns. I learned the locations of energy infrastructure as well as the largest shipping routes and ports, and this meant I also realized when the environment changed. For example, we found oil appearing in regular areas at sea all over the world. On a weekly basis, we discovered  obvious oil slicks where the normally smooth grey (on a radar image) ocean was instead splattered with black streaks. I also tracked  some of the vessels I believed were responsible for the oily waste and they shared something in common: many were registered under flags different from their country of ownership. I wanted to know more. Why were ships dumping in the same places — what was it about those areas that was attracting them? Did those vessels have something in common? Who was responsible for making the choice to dump pollution — the crew, the vessel operator, or the vessel company? This was the catalyst for my largest project at SkyTruth, a multi-month pursuit to understand the scale, impact, intentions, and potential solutions of the dumping of this untreated oily waste. 

Compilation of training data showing the various ways oil slicks appear on radar satellite images.

Bilge dumping isn’t the first environmental issue that people think of when they think of protecting the Earth. In fact, when I started at SkyTruth I had only ever heard of accidental, large scale oil spills, such as the 2010 BP spill in the Gulf of Mexico, and was unaware that smaller, more frequent and intentional acts of pollution occur. Additionally, there is little information about bilge dumping  online. One of the last large-scale reports, published by the National Academies Press, was released in 2003. My quest to know more had to be thorough. I had to read prolifically and search widely in order to piece together the true scale and impact of this issue. 

What did I find? I learned how vast the world’s ocean is (encompassing various oceans, composed of bodies of water such as seas and straits) and how little the ocean is regulated (legal authority depends on nearby countries). Promising international treaties don’t necessarily lead to legislation that allows for enforcement or meaningful measures to prosecute polluters. Vessels’ operators should know that polluting the oceans is wrong, but have little incentive to protect marine waters, especially when penalties are rare. I learned that some vessel operators choose to pollute the ocean — to harm coastal birds, dolphins, and coral reefs, to adversely impact human health, to harm the livelihoods of coastal businesses, and to leave beaches stained and tarred — all just to save money.  

But my research didn’t just uncover bad news. A lot of stakeholders are interested in initiatives supporting more sustainable seas. Not only citizen activists, non-profits, and coastal communities, but investors and technology providers.  Several indexes score vessels on how well they manage waste and emissions, and some international sustainable shipping partnerships have pledged to support and invest in cleaner ships. Additionally, support systems for whistleblowers allow them to share their stories in confidence, so that authorities can punish the operators of vessels that  are polluting at sea with large fines and probations. And groups like SkyTruth are out there fighting for a cleaner world.  You can access my findings in my series of blog posts here

Likely bilge dumping events identified by SkyTruth in 2020

In general, my time at SkyTruth taught me how to use powerful technology to solve complex issues and how to use data to tell stories. I was encouraged to ask as many questions as I answered, to differentiate between what was certain or just an assumption, to be fair in my reporting (using words such as “likely” or “suspected” instead of assuming blame) and to seek evidence-based truths. I was included on esoteric programming projects that I couldn’t quite understand and was pushed to grow from those challenges; I learned faster this way. I was given the autonomy to do my own investigative research, and was provided  a platform to report on — an overwhelming transition from positions I had previously held. The SkyTruth team had confidence in me, and valued my feedback. I will take my experiences from SkyTruth out into my next venture with the same enthusiasm to do work with an important mission. 

When I started writing my  series on global bilge dumping I was inspired by a quote SkyTruth’s Writer-Editor Amy Mathews introduced to me: “Don’t just share your data, share your awe,” which she attributed to former National Public Radio correspondent Christopher Joyce. True fulfillment comes from making a difference and being motivated by what matters most to us. Nonprofit organizations like SkyTruth have the ability to engage in both local and exotic pursuits, to consider personal stories, and tackle the challenges of society for reasons beyond mere profit. They think big — really big — and look into the future; this is awe-inspiring work. They pursue concerns we may not know we have, matters that elude us in our day-to-day lives, but that have true impact. Working for a cause you care about is fulfilling. You never have to doubt the importance of your work. It was humbling to be a changemaker in the weekday hours. 

As I wrap up my ten months at SkyTruth, every day I still feel a profound sense of how small I am. SkyTruth, through the constant engagement with global imagery, made me recognize the interconnectedness of the world and amplified the numerous opportunities to advocate for change. I’ve learned that the more informed you are, the more you can make good decisions about your life and future. I’ve learned to seek a deeper understanding of issues beyond what appears on the surface. And I’ve learned to question everything, observe the environment, appreciate it, and protect it. 

 

Photo: Tatianna at work during COVID-19 quarantine. Photo credit: Tatianna Evanisko

Alice Foster’s Internship Triggered New Excitement About Her Career Possibilities

Before her internship, Alice felt burnt out at school. After applying new skills and technologies to environmental projects at SkyTruth, she’s looking forward to her remaining classes and a fulfilling career.

As I wrap up my four-month internship at SkyTruth, I would like to share some highlights and takeaways from my experience. During my internship I explored the field of geospatial technology for the first time, which allowed me to learn new skills and gave me insight into my career goals. I learned about global environmental issues that I hadn’t known existed. And I got to work with a kind, dedicated, creative group of people. I contributed to SkyTruth’s mountaintop mining research and Project Inambari, which will create an early alert system for tropical forest mining. I also spent time identifying oil and gas well pads, collecting images of oil slicks, and creating annotated maps in QGIS, a geographic information system application that can be used to analyze and visualize geospatial data such as satellite imagery or a ship’s track across the ocean.

On just my first day of orientation at SkyTruth, the high level of support and guidance I received from the staff surprised me. My advisers Brendan Jarrell and Christian Thomas spent lots of time introducing me to concepts and technologies (like Google Earth Engine and QGIS) that I would use in my work. One of the first skills I learned was recognizing oil slicks on satellite imagery — most likely from vessels dumping oily bilge water at sea — and creating an annotated map to reveal the slicks to the public. Brendan patiently guided me through the steps to making a map twice. The team congratulated me when I found my first slick, even though I did not think it merited attention. This encouragement made me feel welcomed and excited about my work. 

The search for oil slicks allowed me to virtually explore oceans and coastlines across the globe. With time, it revealed to me more than how to use geospatial technology, but how little geography I knew. I would toggle past a country or island and wonder what it was like there, realizing I did not even know its name. And so I started exploring a geography trivia website in my free time to teach myself the countries of the world. I am now learning capital cities in Europe, which I tend to forget.

After getting practice with Google Earth Engine — a tool for analyzing and mapping satellite imagery and change around the world —  during my first couple of weeks at SkyTruth, I became involved in some mining-related projects. In one project, I adapted code from SkyTruth’s mountaintop mining research to incorporate satellite imagery from the European Space Agency’s Sentinel-2 satellite. This imagery provides us additional data, which could improve our ability to detect surface mining throughout Central Appalachia. Working with the code in Earth Engine allowed me to better understand SkyTruth’s process for identifying mines. First, we produce a greenest pixel composite image from a collection of images. Making a composite in Earth Engine means combining multiple overlapping images to create a single image. Images can be combined in different ways; in this case, the greenest pixel composite selects pixels with the highest Normalized Difference Vegetation Index (NDVI) values compared with corresponding pixels in the image collection. NDVI is an indicator of plant health in a given area. To provide a more concrete example, suppose we want to make a greenest pixel composite from three images, all showing a part of West Virginia at different times of summer. Say we look at one pixel in one of the images, which covers a small square of forest. We then compare this pixel with the pixels covering the same bit of forest in the other two images, and we choose the greenest of the three (or, the pixel with the highest NDVI value). If we repeat this process for every pixel in the image, we get one image with all the greenest pixels selected from the collection. 

A second script uses the greenest pixel composite to approximate the lowest NDVI value for each county, producing a threshold image. Again, say we have the greenest pixel composite of West Virginia that we just made. Now we look at forested areas within one county and find the pixels that are least green, or have the lowest NDVI values, and then take the average of these NDVI values. This is the threshold for that county; if a pixel is less green than the threshold, it is likely a mine. Our output image contains these values for every county. As a final step, we compare the greenest pixels with the NDVI thresholds to determine likely mine areas. 

Figure 1. Mining data overlying a Sentinel-2 greenest composite image. The image covers counties in West Virginia, Virginia, and Kentucky.

SkyTruth’s surface mining expert, Christian Thomas, also had me experiment with two different techniques for masking clouds in Sentinel-2 imagery. Clouds obstruct necessary data in images, so clearing them out improves analyses. The standard approach uses a built-in “cloud mask” band. The other approach is an adapted “FMasking” method. This takes advantage of the  arrangement of sensors on Sentinel-2 satellites, which creates a displacement effect in the imagery that is more pronounced for objects at altitude. The FMask uses this effect to distinguish low altitude clouds from human-made infrastructure on land. Though the two methods had similar results, the FMask seemed slightly more accurate.

Working on technical projects like this, I learned how much I enjoy using imagery and geospatial data. I had found analyzing data interesting in the past, but something about being able to visualize the information on a map was even more appealing. I loved how a satellite image could be reduced to numbers and assessed quantitatively, or understood visually, almost as a piece of art. 

In another project, I had the opportunity to develop my writing skills by contributing to an  application for the Artisanal Mining Grand Challenge, a global competition to provide solutions for small-scale, low-tech, and/or informal mining. Researching artisanal gold mining was illuminating, as I knew almost nothing about the subject beforehand. I learned that illegal gold mining in Venezuela and Peru has often involved brutal violence and exploitation. In recent decades, labor and sex trafficking have plagued remote mining regions like Madre de Dios. Small-scale mining practices are also particularly damaging to the biodiverse Amazon ecosystem. To extract a small amount of gold, miners must dig up massive amounts of sediment, denuding the landscape in the process. The use of mercury in artisanal gold mining is incredibly detrimental to water quality and human health.

I was also able to be involved in the technical side of this project, building a tool to detect mines in the Peruvian Amazon. I created a mask that removes water from satellite images so that water areas could not be mistaken for mine areas or vice versa. Mines are often near water or can look like water in imagery. To make the mask, I used the European Commission’s Joint Research Centre global surface water dataset. This dataset contains information about where and when surface water occurred around the world over the past thirty years. In Google Earth Engine, the data is stored in an image with bands representing different measures of surface water. I used the “occurrence,” “seasonality,” and “recurrence” bands to create the mask. “Occurrence” refers to how often water was present at a location; “seasonality” means the number of months during which water was present; and “recurrence” is the frequency with which water returned from one year to the next. I tried to find a combination of band values that would do the best job getting rid of water without masking mines or forest. For example, using an occurrence value of twenty, (that is, masking pixels where water was present twenty percent or more of the time), ended up masking mine areas as well. Christian also suggested using a buffer, which meant that pixels adjacent to a masked pixel also got masked. Since the mask often did not capture all of the pixels in a body of water, the buffer filled in the gaps. Masked pixels dotting a river became a continuous thread. The buffer also helped eliminate river banks, which look similar to mines. We applied the finished water mask to the area of interest in Madre de Dios, Peru.

Figure 2: Water mask in the Madre de Dios region of Peru. White pixels have value 1, while black pixels (water) have value 0. When the mask is applied to a satellite image, all pixels in the black areas appear transparent and are not included in analyses. When identifying potential mines in the image, the masked areas are ignored.

Researching issues related to artisanal gold mining left me unsure of how countermeasures can fully promote the welfare of mine workers and others involved in the long term. The problem of illegal gold mining seems entrenched in broader economic and social issues and therefore cannot be addressed simply by identifying and eradicating mines. Nevertheless, understanding the great damage that this type of mining can do to humans and their environment made clear to me the importance of the project. 

Not only did working at SkyTruth teach me a variety of technical and professional skills, it also helped reveal to me what I want to learn about and pursue in the future. In school last fall, I felt burnt out to the point that I just wanted to get through my remaining semesters and be done. Now I feel the excitement about academics I had as a freshman, motivated and informed by my experience at SkyTruth. With my interest in geology and climate issues renewed, I feel like there is barely enough time left to take all the classes I want to. I hope to improve on skills like writing and computer programming so that I can contribute my best work in the future. Being part of an amazing team has motivated me in that way. I also know that I would like to use the geospatial technologies and approaches I learned at SkyTruth moving forward. I feel excited about future career possibilities; before my internship, I felt confused.

I want to give a huge thank you to Bruce and Carolyn Thomas for hosting me in Shepherdstown. I want to thank Christian for introducing me to SkyTruth and for including me in his Dungeons and Dragons game! And I want to thank everyone on the SkyTruth team for their guidance and for being wonderful.

Figure 3: Team Hike, Harpers Ferry, West Virginia. Photo by Amy Emert.

SkyTruth Board Member Mary Anne Hitt: Activist Extraordinaire

Mary Anne Hitt has led Sierra Club’s Beyond Coal Campaign to extraordinary national success. But she honed her skills in Appalachia, with a little help from SkyTruth.

You might say Mary Anne Hitt has Appalachian activism in her blood. When she was growing up in Gatlinburg, Tennessee (where she attended Dolly Parton’s former high school), her father was Chief Scientist at Great Smoky Mountains National Park. Back then, acid rain was decimating high elevation forests in the East, fueled by pollution from coal-fired power plants. Her father watched as iconic places in the park turned into forests of skeleton trees. He knew the science pointed to nearby power plants run by the Tennessee Valley Authority, and wanted to stop the pollution. But his warnings triggered some resistance from those who didn’t want to rock the boat. “So right from the start,” says Mary Anne, she was “immersed in the beauty and the threats” of protecting Appalachian forests. And she knew the costs of speaking out.

Those costs have never stopped her. Mary Anne graduated from the University of Tennessee, creating her own environmental studies major and forming a student environmental group that continues today. Later, she obtained a graduate degree in advocacy at the University of Montana. Now, she leads the Sierra Club’s Beyond Coal Campaign; a national effort to retire all coal plants in the United States, moving towards 100% renewable energy by 2030, while supporting economic opportunities in communities affected by plant closures.

And she serves on SkyTruth’s board of directors. Her entre to SkyTruth is also steeped in Appalachian advocacy. In the early aughts, Mary Anne was Executive Director of Appalachian Voices, a nonprofit conservation group dedicated to fighting mountaintop mining, fracked-gas pipelines and other harmful activities in Appalachia, while advancing energy and economic alternatives that allow Appalachian communities to thrive. Appalachian Voices is one of SkyTruth’s conservation partners; a relationship that began under Mary Anne’s leadership.

As Mary Anne tells it, Appalachian Voices was fighting mountaintop mining and construction of a new coal plant in southwest Virginia. While fighting the plant, they discovered that 200 new power plants were planned across the country. In other words, a whole new generation of power plants was on the books to replace aging plants. A coalition of grassroots groups and local citizens, organized with help from the Sierra Club, worked to stop them, fighting permits at every stage, slowing the process down and making financial backers nervous.

Figure 1. Mary Anne Hitt

Appalachian Voices contacted SkyTruth to help them convey the vast extent of mountaintop mining in Appalachia as part of their work. In response, SkyTruth developed the first scientifically credible database on the extent of mountaintop mining in the region. (You can read more about this collaboration and what we found here.) SkyTruth continues to update this database every year, providing scientists and others valuable information that supports research on the ecological and human health effects of mountaintop mining.

SkyTruth’s database helped support the broader advocacy work Appalachian Voices was spearheading to fight coal mining and power plants in the region. Collectively, environmental, legal, and grassroots groups nationwide stopped almost all of the proposed power plants, according to Mary Anne. (Ironically, the one in southwest Virginia actually did get built.) “If these plants had been built it would have been doom for our climate,” Mary Anne says now. “There would have been no room for renewables…Grassroots people working in their communities made it happen. That’s what makes me most proud.”

Mary Anne took her successful experience fighting power plants in Appalachia and brought it to the Sierra Club as Deputy Director of the Beyond Coal Campaign in 2008, later becoming Director. The Sierra Club has built on those early lessons and applied them to shutting down all coal plants in the United States. Today, 312 of 530 plants that existed in 2010 have retired or announced their retirement. And according to Mary Anne, the United States reached a promising benchmark a year ago: last April marked the first time we obtained more energy from renewables than from coal. In fact, in 2019 the US consumed more power from renewable energy than from coal for the first time in 130 years. “Most of our arguments now are economic,” says Mary Anne. “The power from a coal plant is more expensive than renewable energy, so people don’t want it. People will keep demanding renewables.”

In April of this year, Mary Anne took on an even bigger responsibility at Sierra Club – the National Director of Campaigns, a new position in the organization where she oversees all the organization’s campaign work. It’s a big job, on top of being a mother to her ten-year old daughter. So why did she agree to join the SkyTruth Board? “Ever since my daughter was born,” says Mary Anne, “I had a policy of not being on any boards because I have a demanding job and serving on boards was more time away from her. But I really believe that SkyTruth’s work is foundational for the environmental movement. I think the ability to see for yourself what’s going on, especially in this age of misinformation, where people don’t know what to believe… the ability to show people with their own eyes what’s going on, I think is more important than ever.”

She also knows from her years in advocacy that having access to technical resources and expertise is challenging for nonprofits, especially small ones. “To provide this to groups in a way that’s technically sophisticated, but they can use it, is a real service,” she says. And SkyTruth has had significant impact on key issues, she notes, particularly given its small size. “To the extent that I can help, I want to do that. And I love that they are based in West Virginia and Shepherdstown – it’s a cool part of SkyTruth’s story.”

But a professional life of activism involves a lot of conflict, Mary Anne acknowledges. To balance it out, she and her husband Than Hitt, a stream ecologist, sing and play guitar at local fundraisers and other community events. Than is a 10th generation West Virginian and they live in Shepherdstown, where SkyTruth is based. The local singing is all for fun she says.

“It’s a way to connect with people you wouldn’t otherwise… And having a creative outlet helps keep me whole.” With activism, “you’re living in your head a lot. Music is in your heart. We all need that.”

 

What’s a Mathematician Doing at SkyTruth?

Alice Foster discovered her love for geology at Brown University, and meandered onto SkyTruth’s path.

My name is Alice Foster, and I started as an intern at SkyTruth this past January. But my journey to SkyTruth was a bit unexpected. I am currently studying applied mathematics at Brown University. And until recently, I was somewhat unenthusiastic about science, although I was interested in conservation issues.

Then, in search of an introductory environmental studies class at my first academic fair, I ended up talking to a professor at the Department of Earth, Environmental, and Planetary Sciences table. She convinced me to try out her class, which she said offered a good foundation for understanding environmental issues. In the opening lecture, I was a bit disappointed to learn that the class was about geology; lacking any understanding of the subject beyond an earthquake project in seventh grade, I associated the word with something vaguely boring and irrelevant. But after a few minutes, I was hooked. I found it beautiful to understand how mountain ranges and canyons and plains come into being, and to try to wrap my head around the massive time scales on which geological processes take place. Learning about crystal deformation at a molecular level was fascinating because it could explain how an entire glacier moves. Everything seemed to fit together. Over the course of the semester we applied physics and chemistry, satellite and seismic imagery, and logic to solve Earth’s riddles. 

One of my favorite topics covered in that class was meandering rivers, a concept I identified with. A meander forms a curve in a river: fast-moving water wears away at the outer bank, while sediment transported by slower-moving water amasses at the inner edge, creating a point bar. This process of erosion and deposition makes the bends bendier and the river wander. 

If you look at outcrops on the side of a road, you might spot evidence of ancient meandering rivers. A fast-moving river can transport and deposit large pebbles in its channel. When the water changes course, the former channel becomes part of the river’s floodplain. At times, the river overwhelms its banks and leaves behind sand and clay to overlay the old layer. Some years later, the channel might shift again and deposit larger grains on top of the fine particles. In the rock record, these deposits can appear as beds of shale interspersed with conglomerates.

Alice camping with friends. Photo by Ailita Eddy.

The summer after I took this geology class, I encountered a magnificent meandering river near a farm I worked at in Iowa. Tall trees with lush foliage grew on one bank; a cow pasture bordered the other. I liked to walk down the road to a bridge overlooking the river. I imagined it all playing out: water flowing around the outer edge and loosening soil from the steep bank, bits of rock bouncing chaotically along the riverbed, and the inner bank growing thick with silt. In millions of years, the vestiges of the river might lie deep beneath the ground, compacted, cemented, and turned to stone. 

Since then, my interest in geology and climate science, combined with my love for mathematics, has informed my meandering career exploration. This semester, I decided to take a break from school and homework and experience new things. I wanted to intern at SkyTruth because SkyTruth’s work combines many of my greatest passions, and because I felt excited about contributing to work that could benefit others. It is amazing to see up close how SkyTruth uses geospatial technology to solve tangible problems. I get to think about math and geology while engaging with immediate conservation issues around the world. 

Right now I am working on monitoring bilge dumping in oceans around the Arabian Peninsula, Africa, and Brazil. I am also working with SkyTruth staff to digitize natural gas well pads for a machine learning model. This model will allow SkyTruth to automatically identify well pads in Alaska and Patagonia.

As an intern I have had the chance to learn how to create maps in QGIS and how to program in Google Earth Engine. QGIS is a geographic information system application that can be used to analyze and visualize geospatial data such as satellite imagery or a ship’s track across the ocean. I have also gotten to reflect on what I might want my career to look like. I love getting to be part of a welcoming, supportive, super knowledgeable, all-around wonderful group of people pursuing new projects and ideas. Though I am unsure of my path, this is the kind of environment I will look for as I embark on my career.

Alice made this on a letterpress printer using a linoleum carving block and metal type. “Wild Geese” is one of her favorite poems. She wanted to create an image having to do with the refuge one can find in the natural world. Credit: Alice Foster