Unusual Behavior by Tankers Near Brazil Oil Spill

The source of the massive oil spill affecting Brazil remains unclear, but unusual tanker activity raises questions.

For months now, oil has been washing up on the beaches of northeast Brazil. The quantity of oil, the large area affected, and the length of time oil has appeared, have generated international news coverage and concern.  Government officials, scientists and non-governmental organizations around the world — including SkyTruth — have been trying to identify the source of the pollution; so far, unsuccessfully. Brazilian researchers have identified a likely location for the origin of the spill based on ocean currents. The oil is a heavy consistency that floats below the surface of the water and Brazilian researchers and government officials have claimed that it is likely from Venezuela, although they haven’t published the chemical analysis data to support this.

Heavy oil has been sullying the beaches of northeastern Brazil since early September. The cause remains elusive. [Photo courtesy tvBrasil via Creative Commons license]

At SkyTruth we have been examining available satellite imagery and evaluating some of the theories put forward on the origin of the spill. We haven’t seen any convincing evidence of oil slicks or sources on the images, and we don’t agree with analyses published by others (here and here) that claim to have solved the mystery. I recently decided to take a look at AIS (Automatic Identification System) ship-tracking data in the region that Brazilian researchers identified to be the likely origin of the spill. When I examined the AIS data, I found some unusual behavior by oil tankers passing through the area. 

AIS is a system in which vessels at sea transmit their location at regular intervals via VHF radio. Initially designed for collision avoidance, this location data is also picked up by satellites and provides a global record of vessel movements. I was aided by Global Fishing Watch’s automated modeling of AIS tracks, developed by data scientist Nate Miller, which identifies loitering events, that is, locations where vessels have essentially come to a stop, and are drifting out at sea. Tankers and cargo ships normally maintain a relatively constant transit speed as they are moving from their point of origin to their destination port. Ships may stop out at sea for a number of reasons, including engine problems, waiting for entry authorization at a port, or even at-sea transfers of cargo or refueling. But spending more than 24 hours adrift at sea represents a financial loss for a tanker and would suggest unusual circumstances.

Of hundreds of tankers that moved through the area in the months before the oil was reported, a handful stood out for having lengthy loitering events near the likely area of origin for the spill. One particular tanker, rather than proceeding directly on a course from Spain to Argentina, stopped for two extended periods (each for approximately 14 hours) just within Brazil’s Exclusive Economic Zone (the EEZ area extends up to 200 nautical miles from shore). The tanker I identified with these unusual loitering events is The Amigo, a 133-meter vessel listed as an Asphalt/Bitumen tanker and flagged to the Marshall Islands. 

Tanker loitering events (yellow circles) detected by Global Fishing Watch analytical tools on the coast of northeast Brazil in July and August 2019 (filtered to events longer than 8 hours). Five loitering events near the area thought to be the likely origin of the spill are shown as larger circles and listed in the table below. The AIS track of tanker The Amigo is shown in red. The EEZ boundary marking Brazil’s waters is in green.

We checked for satellite imagery in the area where the vessel was drifting (July 24 – 26) and unfortunately didn’t turn anything up. So any possible association between this tanker and the oil spill is purely speculative. However,  some of the circumstances of the vessel’s operation fit with theories on the source of the spill so we think its activities should be scrutinized further.

The Amigo is an unusual tanker in that it is outfitted to maintain its cargo at high temperature to keep it from solidifying. When the tanker passed through Brazilian waters off Brazil’s northeast coast, it was en route from Cadiz, Spain to a port near Buenos Aires, Argentina. The loitering events occurred between July 24 and July 26 before the vessel proceeded to Argentina. Port records show that on August 10 the vessel delivered 14,000 tons of bitumen (or at least it was scheduled to offload that quantity of product). AIS confirms that the tanker reached dock in Campana, Argentina on August 10. 

The tanker was coming from Cadiz, Spain though we don’t know if the asphalt was actually from Spain or what quantity was loaded at the port facility in Cadiz. Earlier this year the vessel visited Venezuelan ports and imported Venezuelan asphalt to the US. This article from March mentions The Amigo in the context of US sanctions against Venezuela that were coming into force. Could The Amigo have been carrying a cargo of asphalt that originated in Venezuela?

Movements of The Amigo since January 2019. The tanker’s current location in Turkey is shown.

The terms asphalt and bitumen appear to be used interchangeably to describe a semi-solid form of petroleum. High heat tankers like The Amigo must maintain their cargo at an elevated temperature so that it does not solidify, and can be pumped out of the vessel. Problems with heating might result in product remaining in one of the ship’s tanks and needing to be flushed out. Even under normal operations, heavy oil residue can build up in the cargo tanks and needs to be washed out or removed to free up usable space. International law requires that this be done in port where the oily sludge can be treated, but many ports lack the necessary treatment facilities. If somehow asphalt did end up being discharged directly into the ocean it would be expected to drift below the surface in warm equatorial waters. This might not generate a large surface oil slick that could be seen on satellite images, possibly explaining our frustration here at SkyTruth. 

As mentioned, there are some legitimate reasons for a tanker to be drifting out at sea. But we think it is fair to pose some further questions about this vessel given the severity of the spill in Brazil. What prompted the vessel to halt its normal transit off Brazil? What was the origin of the asphalt carried by the vessel and what quantities were loaded and offloaded? Could the chemical properties of the oil found on Brazilian beaches match this cargo, or any oily residue remaining in The Amigo’s cargo tanks?

But it’s not just The Amigo that’s raising questions for us. We’ve detected loitering events by other tankers in recent months (as shown on the map above and in the table below). We’ve found evidence of likely bilge-dumping by a few vessels in the area. And we’ve noticed that more than a dozen tankers operating in this area turn their AIS off while at sea, apparently in violation of international maritime safety law.

Table showing the five tanker loitering events detected near the likely source of origin of the Brazil oil spill, shown as large yellow circles on the map at top.

We hope to find out answers to some of these questions soon, and we will continue to investigate all available data that might help to identify the origin of this devastating oil spill. One problem is very clear: we don’t know everything we need to know about the tanker activity near Brazil, and in many other parts of the ocean. 

Bilge Dumping off the Coast of Brazil

The cause of the massive oil spill plaguing Brazil’s beaches is still unknown, but monitoring reveals a potential new bilge dumping incident

We still haven’t found the cause of the massive oil spill that’s been plaguing Brazil’s beaches since early September.  

But SkyTruth’s continued surveillance of the coast of northeastern Brazil, in response to one of the country’s worst oil-related environmental disasters ever, has uncovered what appears to be another previously unreported bilge dumping incident off the coast of Joao Pessoa in the state of Paraiba. Located about 20 km offshore, a 25 km-long slick appears to originate from the Grajau, a Brazil-flagged liquefied petroleum gas (LPG) tanker. Slicks such as this are a hallmark of the intentional dumping of untreated, oily bilge wastes from vessels underway at sea, although there may be other explanations for this slick (for example, the ship was experiencing a serious mechanical problem). The slick (a long, dark streak) and vessel (a bright spot at the south end of the slick) are shown on this Sentinel-1 radar satellite image taken on the 19th of July. We identified the vessel using their public AIS tracking broadcasts, extracted from the ShipView vessel-tracking platform. The image was captured at 07:53 UTC; a careful look at the AIS broadcasts from Grajau just before and after the image was taken show that the vessel we can see on the radar image is very likely Grajau.

Recent discoveries of bilge dumping in the Atlantic Ocean along Brazil’s coast reveal that this is a persistent problem that — as in many places — lacks effective enforcement. None of the slicks we’ve seen appear big enough to be the source of the oil plaguing Brazil’s beaches. This potential bilge slick from Grajau is no exception: it’s a modest-sized slick compared with the dozens of bilge slicks we’ve seen from other places around the world that are occasionally more than 100 km long. And this slick, just 20 km offshore, probably would have dissipated or washed ashore several weeks before the thick globs of heavy oil began to appear on the beaches in early September.

Nevertheless, bilge dumping is a chronic source of oil pollution in the ocean that has been hidden for too long. Now that we can see it, and can identify the likely polluters, it’s time for governments to take action to bring this illegal practice to an end.

AIS ship-tracking broadcasts (red dots) from the Brazil-flagged LPG tanker Grajau, overlain on a Sentinel-1 radar satellite image showing an apparent bilge-dumping slick (dark streak) and the vessel that appears to be responsible (bright spot, indicated within the red circle). Based on the AIS data, we think this vessel is likely the Grajau. See inset map at upper right for detail. Image was collected at 07:53 on July 19.

The location of the boat, relative to Brazil’s coastline.

New Data Available on the Footprint of Surface Mining in Central Appalachia

The area of Central Appalachia impacted by surface mining has increased — by an amount equal to the size of Liechtenstein — despite a decline in coal production.

SkyTruth is releasing an update for our Central Appalachian Surface Mining data showing the extent of surface mining in Central Appalachia. While new areas continue to be mined, adding to the cumulative impact of mining on Appalachian ecosystems, the amount of land being actively mined has declined slightly.

This data builds on our work published last year in the journal PLOS One, in which we produced the first map to ever show the footprint of surface mining in this region. We designed the data to be updated annually. Today we are releasing the data for 2016, 2017, and 2018.

Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

Coal production from surface mines, as reported to the US Energy Information Administration (EIA), has declined significantly for the Central Appalachian region since its peak in 2008. Likewise, the area of land being actively mined each year has steadily decreased since 2007. But because new land continues to be mined each year, the overall disturbance to Appalachian ecosystems has increased. From 2016 to 2018 the newly mined areas combined equaled 160 square kilometers – an area the size of the nation of Liechtenstein. One of the key findings of our research published in PLOS ONE was that the amount of land required to extract a single metric ton of coal had tripled from approximately 10 square meters in 1985 to nearly 30 square meters in 2015. Our update indicates that this trend still holds true for the 2016-2018 period: Despite the overall decrease in production, in 2016 approximately 40 square meters of land were disturbed per metric ton of coal produced – an all time high. This suggests that it is getting harder and harder for companies to access the remaining coal.

Active mine area (blue) and reported surface coal mine production in Central Appalachia (red) as provided by the US Energy Information Administration (EIA). The amount of coal produced has declined much more dramatically than the area of active mining.

This graph shows the disturbance trend for surface coal mining in Central Appalachia. Disturbance is calculated by dividing the area of actively mined land by the reported coal production for Central Appalachia as provided by the EIA.

Tracking the expansion of these mines is only half the battle. We are also developing landscape metrics to assess the true impact of mining on Appalachian communities and ecosystems. We are working to generate a spectral fingerprint for each identified mining area using satellite imagery. This fingerprint will outline the characteristics of each site; including the amount of bare ground present and information about vegetation regrowing on the site. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest.

Mining activity Southwest of Charleston, WV. Land that was mined prior to 2016 is visible in yellow, and land converted to new mining activity between 2016 and 2018 is displayed in red.

Recovery matters. Under federal law, mine operators are required to post bonds for site reclamation in order “to ensure that the regulatory authority has sufficient funds to reclaim the site in the case the permittee fails to complete the approved reclamation plan.” In other words, mining companies set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. If state inspectors determine that mine sites are recovered adequately, then mining companies recover their bonds.

But the regulations are opaque and poorly defined; most states set their own requirements for bond release and requirements vary depending on the state, the inspector, and local landscapes. And as demand for coal steadily declines, coal companies are facing increasing financial stress, even bankruptcy. This underlines the importance of effective bonding that actually protects the public from haphazardly abandoned mining operations that may be unsafe, or unusable for other purposes.

We are now working to track the recovery of every surface coal mine in Central Appalachia. By comparing these sites to healthy Appalachian forests we will be able to grade recovery. This will allow us to examine how fully these sites have recovered, determine to what degree there is consistency in what qualifies for bond-release, and to what extent the conditions match a true Appalachian forest.

Bilge Dumping Caught in Indonesia – Again!

SkyTruth identified the bulk carrier Lumoso Aman as the likely polluter via AIS and satellite imagery.

On October 10, 2019, SkyTruth discovered yet another likely bilge dumping incident in Southeast Asian waters. At 10:25:26 UTC (Coordinated Universal Time), Sentinel-1 Imagery captured this oily pollution during routine monitoring of the Makassar Strait. Lingering off the southwest coast of Sulawesi, Indonesia, this oil slick measures approximately 33 kilometers long. The slick and the suspected responsible vessel (circled in red in Figure 1 below) appear roughly 100 kilometers west of the coast of Makassar, the capital of Sulawesi. Makassar is a port city with active commerce and tourism.

Figure 1: A vessel suspected of bilge dumping.

We identified the potential culprit through AIS (Automatic Identification System) broadcasts from the Lumoso Aman (Figure 2), a bulk cargo carrier operating under the flag of Indonesia. 

Figure 2: A picture of the Lumoso Aman, courtesy of Vessel Finder.

Bilge dumping is the disposal of waste water from a ship’s lower hull. Bilge water is supposed to be treated before it’s discharged, but sometimes vessel operators will bypass the pollution control equipment and flush oily, untreated bilge into the ocean – in direct violation of international marine pollution law. You can learn more about this ongoing source of ocean pollution, and how SkyTruth identifies perpetrators, in our recent post about bilge dumping in Southeast Asia.

Our motto at SkyTruth is “If you can see it, you can change it.” We tirelessly monitor the ocean with this vision in mind, to be watchdogs and defenders of our Earth’s waters. No matter how remote these areas of pollution appear to be, we can see them with satellite images. These seemingly remote bodies of water are connected to waters throughout the world. Just as air pollution migrates between contiguous countries or states, oil pollution can find its way to any coastline and harm coastal environments and communities. With continued monitoring, we hope that nations, communities, and enforcement agencies can hold ship operators accountable, making it clear that bilge pollution is an unacceptable threat to the world’s ocean ecosystems. 

Figure 3: SkyTruth intern Tatianna Evanisko tracks polluting vessels around the world from the SkyTruth offices in Shepherdstown WV. Photo credit: Johnna Armstrong.

New Oil and Gas Flaring Data Available

Updated data means anyone can see where, and how much, natural gas is being flared in their area.

SkyTruth has updated its Annual Flare Volume map to include 2017 and 2018 data. We first launched the map in 2017 to provide site specific estimates of the annual volume of gas flared during oil and gas production worldwide.

What is flaring?

Flaring is the act of burning off excess natural gas from oil wells when it can’t economically be stored and sent elsewhere. Flaring is also used to burn gases that would otherwise present a safety problem. But flaring from oil wells is a significant source of greenhouse gases. The World Bank estimated that 145 billion cubic meters of natural gas were flared in 2018; the equivalent of the entire gas consumption of Central and South America combined. Gas flaring also can negatively affect wildlife, public health, and even agriculture.

What can I do?

SkyTruth’s map allows users to search the data by virtually any geographic area they’re interested in, then easily compare and download flare volume totals from 2012 through 2018 to observe trends. In addition, it separates flaring into upstream (flaring of natural gas that emerges when crude oil is brought to the Earth’s surface), downstream oil (refineries) and downstream gas (natural gas processing facilities). Residents, researchers, journalists and others concerned about gas emissions in their city or study area can easily determine the sources of the problem using the latest data available, and how much gas has been flared.

VIIRS Satellite Instrument and the Earth Observation Group

The data we use in the SkyTruth map is a product of the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instrument, which produces the most comprehensive listing of gas flares worldwide. VIIRS data has moved to a new home this year at the Earth Observation Group in the Colorado School of Mines’ Payne Institute for Public Policy. SkyTruth also uses the VIIRS nightfire data in its popular flaring visualization map.

Thanks to the Earth Observation Group for continuing to make the nightfire data freely available to the public! They have authored the following papers for those interested in the VIIRS instrument and how the flare volume is calculated.

Elvidge, C. D., Zhizhin, M., Hsu, F -C., & Baugh, K. (2013).VIIRS nightfire: Satellite pyrometry at night. Remote Sensing 5(9), 4423-4449.

Elvidge, C. D., Zhizhin, M., Baugh, K. E, Hsu, F -C., & Ghosh, T. (2015). Methods for global survey of natural gas flaring from Visible Infrared Imaging Radiometer Suite Data. Energies, 9(1), 1-15.

Elvidge, C. D., Bazilian, M. D., Zhizhin, M., Ghosh, T., Baugh, K., & Hsu, F. C. (2018). The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Reviews, 20, 156-162.