SkyTruth’s West Virginia FrackFinder Datasets Updated

Oil and gas drilling activity in West Virginia continues to expand.

For more than a decade, SkyTruth has been tracking the footprint of oil and gas development in the Marcellus and Utica shale basins in West Virginia, Pennsylvania, and Ohio through our FrackFinder project. Initially, our FrackFinder project relied on volunteers to help us identify activity on the ground (thank you to all you SkyTruthers out there!). Since then, we’ve continued to update this database with help from SkyTruth interns and staff. Today, we’re excited to announce our latest updates to our West Virginia FrackFinder datasets. The updated data now include drilling sites and impoundments that appeared on the landscape through 2015–2016 (our 2016 update) and through 2017–2018 (our 2018 update). In 2016, 49 new drilling sites and 17 new impoundments appeared on the landscape. In 2018, 60 additional drilling sites and 20 new impoundments appeared; an 18% and 15% jump, respectively, from 2016.

With these additions, our West Virginia datasets track the footprint of oil and gas development in the state for more than decade, stretching from 2007 to 2018. 

Image 1. New drilling sites in Tyler County, near Wilbur and West Union, WV

We use high-resolution aerial photography collected as a part of the USDA’s National Agricultural Imaging Program (NAIP) to identify drilling sites and impoundments and make their locations available to the public. NAIP imagery is typically collected every two to three years, so once the imagery from each flight season is available, we  compare permit information from the West Virginia Department of Environmental Protection with NAIP imagery to find and map new drilling sites. Our datasets of what’s actually on the ground — not just what’s been permitted on paper — help landowners, public health researchers, nonprofits, and policymakers identify opportunities for better policies and commonsense regulations. And our data has resulted in real-world impacts. For example, researchers from Johns Hopkins University used our FrackFinder data in Pennsylvania to document the human health impacts of fracking. Their research found that living near an unconventional natural gas drilling site can lead to higher premature birth rates in expecting mothers and may also lead to a greater chance of suffering an asthma attack. Maryland Governor Larry Hogan cited this information in his decision to ban fracking in his state. 

We’ve shared the updated FrackFinder West Virginia data with research partners at Downstream Strategies and the University of California–Berkeley investigating the public health impacts of modern drilling and fracking, and with environmental advocacy groups like Appalachian Voices and FracTracker Alliance fighting the expansion of energy development in the mid-Atlantic.

We are also proud to roll out a Google Earth Engine app, which will be the new home for our  West Virginia FrackFinder data. Users can find all of our previous years’ data (2007–2014) as well as our new 2016 and 2018 datasets on this app. The interactive map allows you to zoom into locations and see exactly where we’ve found oil and gas drilling sites and wastewater impoundments. A simple click on one of the points will display the year in which we first detected drilling, along with the measured area of the site or impoundment (in square meters). Users can toggle different years of interest on and off using the left panel of the map. At the bottom of that same panel, uses can access the total number of drilling sites and impoundments identified during each year. Lastly, users can download SkyTruth’s entire FrackFinder dataset using the export button.

Image 2. Our Earth Engine app lets users track oil and gas development through time in WV.

We hope that the updates to our West Virginia FrackFinder datasets, and the new Earth Engine app that hosts them, will inform researchers, landowners, policymakers, and others, and help them bring about positive change. Feel free to take a look and send us feedback; we love to hear from people using our data.

What’s a Mathematician Doing at SkyTruth?

Alice Foster discovered her love for geology at Brown University, and meandered onto SkyTruth’s path.

My name is Alice Foster, and I started as an intern at SkyTruth this past January. But my journey to SkyTruth was a bit unexpected. I am currently studying applied mathematics at Brown University. And until recently, I was somewhat unenthusiastic about science, although I was interested in conservation issues.

Then, in search of an introductory environmental studies class at my first academic fair, I ended up talking to a professor at the Department of Earth, Environmental, and Planetary Sciences table. She convinced me to try out her class, which she said offered a good foundation for understanding environmental issues. In the opening lecture, I was a bit disappointed to learn that the class was about geology; lacking any understanding of the subject beyond an earthquake project in seventh grade, I associated the word with something vaguely boring and irrelevant. But after a few minutes, I was hooked. I found it beautiful to understand how mountain ranges and canyons and plains come into being, and to try to wrap my head around the massive time scales on which geological processes take place. Learning about crystal deformation at a molecular level was fascinating because it could explain how an entire glacier moves. Everything seemed to fit together. Over the course of the semester we applied physics and chemistry, satellite and seismic imagery, and logic to solve Earth’s riddles. 

One of my favorite topics covered in that class was meandering rivers, a concept I identified with. A meander forms a curve in a river: fast-moving water wears away at the outer bank, while sediment transported by slower-moving water amasses at the inner edge, creating a point bar. This process of erosion and deposition makes the bends bendier and the river wander. 

If you look at outcrops on the side of a road, you might spot evidence of ancient meandering rivers. A fast-moving river can transport and deposit large pebbles in its channel. When the water changes course, the former channel becomes part of the river’s floodplain. At times, the river overwhelms its banks and leaves behind sand and clay to overlay the old layer. Some years later, the channel might shift again and deposit larger grains on top of the fine particles. In the rock record, these deposits can appear as beds of shale interspersed with conglomerates.

Alice camping with friends. Photo by Ailita Eddy.

The summer after I took this geology class, I encountered a magnificent meandering river near a farm I worked at in Iowa. Tall trees with lush foliage grew on one bank; a cow pasture bordered the other. I liked to walk down the road to a bridge overlooking the river. I imagined it all playing out: water flowing around the outer edge and loosening soil from the steep bank, bits of rock bouncing chaotically along the riverbed, and the inner bank growing thick with silt. In millions of years, the vestiges of the river might lie deep beneath the ground, compacted, cemented, and turned to stone. 

Since then, my interest in geology and climate science, combined with my love for mathematics, has informed my meandering career exploration. This semester, I decided to take a break from school and homework and experience new things. I wanted to intern at SkyTruth because SkyTruth’s work combines many of my greatest passions, and because I felt excited about contributing to work that could benefit others. It is amazing to see up close how SkyTruth uses geospatial technology to solve tangible problems. I get to think about math and geology while engaging with immediate conservation issues around the world. 

Right now I am working on monitoring bilge dumping in oceans around the Arabian Peninsula, Africa, and Brazil. I am also working with SkyTruth staff to digitize natural gas well pads for a machine learning model. This model will allow SkyTruth to automatically identify well pads in Alaska and Patagonia.

As an intern I have had the chance to learn how to create maps in QGIS and how to program in Google Earth Engine. QGIS is a geographic information system application that can be used to analyze and visualize geospatial data such as satellite imagery or a ship’s track across the ocean. I have also gotten to reflect on what I might want my career to look like. I love getting to be part of a welcoming, supportive, super knowledgeable, all-around wonderful group of people pursuing new projects and ideas. Though I am unsure of my path, this is the kind of environment I will look for as I embark on my career.

Alice made this on a letterpress printer using a linoleum carving block and metal type. “Wild Geese” is one of her favorite poems. She wanted to create an image having to do with the refuge one can find in the natural world. Credit: Alice Foster

New Intern Matthew Ibarra Shifts from Aerospace Engineering to Protecting the Planet from Space

Matthew thought he wanted to be an aerospace engineer when he started college. Then he learned more about environmental damage to the planet.

Hello There!

My name is Matthew Ibarra and I am a new intern at SkyTruth. I am currently a student attending West Virginia University (WVU). Originally I came to WVU to study mechanical and aerospace engineering. I have always been passionate about math and science and so naturally I believed engineering would be a perfect fit for me. I was a part of my robotics team in high school and I believed this would be something I could do forever. 

However, as my time at WVU went on I became much less interested in engineering and I decided that I wanted to study something else. Through my engineering classes I inadvertently learned more about energy and from there about renewable energy sources. I developed a passion for renewables and I decided I wanted to shift my focus of study and work on environmental challenges. I have always felt there is a lot more bad news than good news in the world and I kept hearing about problems such as massive deforestation in the Amazon, pollution of the planet and the oceans — and those were just the tip of the melting iceberg. I wanted to do something that would leave a lasting impact. All of these factors pushed me to change my major to Environmental and Energy Resource Management. And it was the best decision I have ever made. 

Matthew played saxaphone for the WVU marching band and currently plays clarinet in the WVU Concert Band and saxophone in the WVU pep band. Photo by Roger Sealey.

My best friend Amanda’s mother Teri works at SkyTruth as our office administrator, which was very serendipitous for me. Amanda told me about SkyTruth and I was excited to learn how SkyTruth gathers environmental data and conducts research using satellite imagery. I was intrigued because it seemed like SkyTruth worked in all the areas I was passionate about: the environment, technology, and research. I looked into some of SkyTruth’s current and past projects and the ones that excited me the most include FrackFinder, which helps keep track of the environmental impacts of fracking for natural gas. I was also excited about SkyTruth’s interactive maps that help track the removal of mountaintops from coal mining. SkyTruth works on many other projects that I knew that I wanted to be a part of as well. An internship at SkyTruth was the perfect way for me to not only help work on projects I cared about, but also to learn more about what I am interested in.

As an intern I am currently working to monitor the South East Asia region for bilge dumps. Bilge dumps are illegal practices by vessels that attempt to bypass pollution control and dump their oily ballast and waste water at sea. I am collecting useful data that will contribute to a machine learning program that can automatically detect bilge dumps from satellite images around the world. I am also working to update FrackFinder to include data from 2016 and create an interactive map that can easily display information such as natural gas well pad locations in West Virginia, and when they were drilled, to show how natural gas fracking has impacted West Virginia over time.

I am passionate about sustainability and hope to make this central to my career. Sustainability is the notion of living your life in such a way that you leave resources for the people who come after you. After my time here at SkyTruth I hope to go into government work. I would like to work for the Department of Energy in the Office of Energy Efficiency and Renewable Energy. Fossil fuels will eventually run out and a transition to renewables will help current climate and environmental issues. I feel that it is important to find solutions now and transition our power needs to something that is more sustainable while we are still able to do so. 

Matthew admires Blackwater Canyon in West Virginia. Photo by Matthew Ibarra.

I believe SkyTruth is important in achieving my goals because I am gaining valuable skills and knowledge that I know will help me in the future. I love working with Geographic Information System programs (GIS). GIS is essentially using computers to analyze physical features of the Earth such as measuring forest density or tracking changing temperatures; it has almost endless applications.  I am learning to work with Google Earth Engine which is essentially a super powerful and intuitive way to work in GIS. Earth Engine requires me to be able to code in the programming language JavaScript and so I’m learning that skill as well. These are skills that will be forever relevant in the future and I am excited to deepen my understanding of them.

When I started college five years ago I never thought that I would end up where I am today. I spent so many sleepless nights trying to finish my physics homework and study my chemistry notes. I never thought that I would want to give all that up to work in something completely different, but I am thankful I did. I am eager to be learning something new every day at SkyTruth and I am thankful to everyone who helped me get to where I am today. I am excited to continue my internship here and keep learning more about what’s important to me.

Matthew is a hockey fan and celebrated the DC Capitals’ Stanley Cup victory in 2018. Photo by Photos Beyond DC.

 

 

7 Things You Didn’t Know You Could Do With SkyTruth Alerts

SkyTruth Alerts is better than ever. Learn how to make our new Alerts work for you.

SkyTruth’s new Alerts app is a year old! Or, in human terms, our new Alerts is in early childhood, a period of tremendous growth across all areas of development with occasional wobbles and stumbles.

SkyTruth Alerts show subscribers and users where environmental incidents have occurred in their Areas of Interest (AOIs), particularly for oil and gas activities. In making Alerts available to the public — at no charge — SkyTruth has provided access to tools, data and satellite imagery that environmentalists and citizen-scientists otherwise wouldn’t have. You can learn more about SkyTruth Alerts here

In 2018, we gave Alerts a facelift and SkyTruth began looking for additional datasets that would help subscribers monitor their AOI. We’ve expanded oil and gas permitting to include West Virginia, Colorado, Wyoming, New Mexico, Montana and Utah. We’ve also added pollution alerts for Florida, New Mexico and New York. (If you’d like to see more datasets, let us know!)

The new Alerts was developed to meet three goals: 

  • Provide users access to satellite imagery;
  • Give users the ability to create, annotate and share their own custom maps;
  • Enable a quicker process for adding new Alert data sources.

Whether you’re a longtime Alerts subscriber or are just starting out, here are seven features you might have missed.

1. Drawing Setback Distances Around an Alert

While Alerts incidents are generally tied to a specific point on a map, they can also greatly affect the surrounding areas. Alerts helps highlight these areas of impact by letting you define setback distances around an incident. (For example, you may get an Alert that your state government has issued a permit to drill and frack a new gas well in your AOI, and you want to create a map showing the 2500-foot zone of potential public health risk around that drilling site.)

Start by viewing the full details of an incident, either by clicking on an incident from an Alerts email, or when navigating the map by clicking an Alert icon, followed by the View Full Report link from the pop-up window.

You’ll find the Draw setbacks link at the top of the left sidebar. After clicking this link:

  1. Select a unit of measure (meter, km, mile).
  2. Select a distance.
  3. Click Draw.
  4. Repeat as necessary.

2. Navigating by Latitude/Longitude

Just like every house has its own address (house number, name of the street, city, etc), every point on the surface of earth can be specified by its own latitude and longitude coordinates. Sometimes, a latitude/longitude is all you have. Fortunately the Alerts Location Search box — located on the upper-right corner of the map — will accept these coordinates just as well as a city, state, or house address.

Try it out by on the Alerts Map by seeing where these latitude/longitude coordinates take you:

  • 36.0986, -112.1107
  • 30, -90

Wondering what the latitude/longitude is for where you are on the Alerts map? If you use a mouse or touchpad, Alerts will always show you the lat/lng for the current location of the pointer. You’ll find these coordinates on the right side of the heading, just under the Login link.

3. Search Alerts by Keyword and Time Period

Alerts has about 420,000 incidents in its database. The primary method for narrowing these down to the ones you’re interested in is by moving around the map, zooming in and out, and creating AOIs. You’ll always see the most recent 100 incidents on your current map.

Looking for a specific incident can seem impossible without the additional filtering that Alerts provides:

  • Start and end dates: Enter either or both dates. Results are shown automatically when completing each date.
  • Keyword: Alerts will search all incidents in the current map boundaries for the keyword you enter here. Keyword search is not case sensitive, so TAYLOR and taylor will return the same results. However, the incident must contain your typed keyword(s) with exactly the same spelling, spacing and syntax. 

Click the  when you’re finished typing the search keyword.

Some of the uses of this feature include searching incidents for a specific owner, address, material, well number (for oil and gas permits), or description. Also, many Alerts sources use special keywords to identify incidents. For example, we add the keyword BIGSPILL for spills over 100 gallons reported to the National Response Center, and for spills that we estimate are bigger than 100 gallons. Essentially, any words you see while viewing an incident can be used to search for similar incidents.

Some examples: 

  • ALLEGHENY POWER
  • TAYLOR ENERGY
  • SHEEN
  • AMMONIA
  • PIPELINE
  • INCINERATOR
  • SEATTLE
  • 063-37531
  • BIGSPILL
  • CRUDE

4. Download the Data to Analyze for yourself

Once you’ve got the map positioned just so, with the map boundaries and zoom level showing the area you’re interested in and any required filtering applied, you can take a closer look at the data and even download a CSV or KML file.

Start by clicking the Table view/Download icon, located on the Alerts tab:

You’re presented with a spreadsheet-like view of the data:

Here are some of the capabilities you’ll have:

  • Show top 20,000 alerts: check to show the most recent 20,000 instead of 100 incidents. [Update 8 May 2020: We’ve increased the number from 2,000 to 20000.]
  • Download KML File: KML files are used in an Earth browser such as Google Earth to layer the incidents visually on a map outside of Alerts. 
  • Download CSV File: CSV files can be opened by spreadsheets or viewed in text editors.
  • Previous and Next buttons take you through the data, page by page.
  • 20 rows dropdown list: allows you to change the number of incidents per page, up to 100.
  • Click on any column header (Id, Title, Incident Date, etc.) to sort on that column. Click again to sort in descending sequence.
  • Pull the vertical bars between column headings to increase/decrease the width of a column.

5. Play a Visualization of How Many Alerts Occurred Over Time

Before running this timeline, position the map with the boundaries and zoom level you want and apply any required filtering.  Start by clicking the Timeline link on the Alerts tab:


Alerts will create annual counts of incidents. Try running the visualization by clicking the
Play button:

From here, you’ll have controls to adjust the visualization:

  • Define how long each step represents (defaults to 1 year): Can select 1, 2, 3, 4, 6, 12, or 24 months.
  • Define how long each step lasts (defaults to 1 second)
  • Select Marker plot or Heat map (defaults to Marker plot): The marker plot visualization will place a marker on the map for each alert; a heat map uses a warm-to-cool color spectrum to show where the incidents are most concentrated.
  • Select a date range (begin and end month/year)
  • Clear markers after each step, or not. If you don’t clear markers after each step, the map will represent a sum of incidents for the current step and and all prior steps.
  • Cluster markers, or not. For marker plots, you can cluster the incidents together instead of showing individual markers. Clustering provides a count of incidents in relative proximity to each other.

You must be logged into Alerts to use the remaining features in this post, making you a SkyTruth Alerts super-user!

6. Measure an Area on the Map

Navigate to any AOI on the map. You may want to switch to the Satellite basemap for a better view of the area. You’ll find basemap selection in the upper-middle section of the map:

Look for something you want to measure, such as a body of water, housing development, industrial complex, or agricultural field.

Start by clicking the Annotations icon , which opens the Annotations window:

There’s a lot to explore here, but for this exercise click the polygon () to start identifying the area you want to measure. You’ll find on-screen help in the Annotations window. In short, you start the measurement by clicking anywhere on the map, then use additional clicks to create new lines around the area you’re measuring. Complete the polygon by clicking the original starting point.

When finished, you’ll have these options:

By checking the Include area checkbox, Alerts will measure and display the selected area in square kilometers.

7. Share a Map Image

Create your custom map — any map! Select the alerts, basemaps, satellite imagery, layers, and annotations you want to show. When the map is ready to share, click the Share icon:

Then click the Download image of map button:

The image that’s downloaded will be a JPG file and can be found where your browser stores downloaded files. It will have a filename starting with skytruthalertsmap followed by the date and time. This is an experimental feature in Alerts and we would appreciate any feedback on its use.

Conclusion:

Alerts is becoming one of the go-to applications in an environmentalist’s toolbox. Soon, you’ll be able to create your own Issue Maps so that you can focus on the area, data, and map controls relevant to a specific topic. We also have high hopes for User Generated Alerts, planned for later in 2020, so you can show the world what’s happening in the places you care about. Stay tuned for new features in the year to come!

SkyTruth 2020: What to Expect in the New Year

Oil pollution at sea, mountaintop mining, Conservation Vision and more on SkyTruth’s agenda.

SkyTruth followers know that we generated a lot of momentum in 2019, laying the groundwork for major impact in 2020. Here’s a quick list of some of our most important projects underway for the new year.

Stopping oil pollution at sea: SkyTruth has tracked oil pollution at sea for years, alerting the world to the true size of the BP oil spill, tracking the ongoing leak at the Taylor Energy site until the Coast Guard agreed to take action, and flagging bilge dumping in the oceans. Bilge dumping occurs when cargo vessels and tankers illegally dump oily wastewater stored in the bottom of ships into the ocean. International law specifies how this bilge water should be treated to protect ocean ecosystems. But SkyTruth has discovered that many ships bypass costly pollution prevention equipment by simply flushing the bilge water directly into the sea.

In 2019 SkyTruth pioneered the identification of bilge dumping and the vessels responsible for this pollution by correlating satellite imagery of oily slicks with Automatic Identification System (AIS) broadcasts from ships. For the first time, we can ID the perps of this devastating and illegal practice.

PERKASA AIS track

Figure 1. SkyTruth identified the vessel PERKASA dumping bilge water via AIS broadcast track overlain on Sentinel-1 image. 

But the Earth’s oceans are vast, and there’s only so much imagery SkyTruthers can analyze. So we’ve begun automating the detection of bilge dumping using an Artificial Intelligence (AI) technique called machine learning. With AI, SkyTruth can analyze thousands of satellite images of the world’s oceans every day –- a process we call Conservation Vision — finding tiny specks on the oceans trailing distinctive oily slicks, and then naming names, so that the authorities and the public can catch and shame those skirting pollution laws when they think no one is looking.

A heads up to polluters: SkyTruth is looking. 

We got a big boost last month when Amazon Web Services (AWS) invited SkyTruth to be one of four nonprofits featured in its AWS re:Invent Hackathon for Good, and awarded SkyTruth one of seven AWS Imagine Grants. We’ll be using the funds and expertise AWS is providing to expand our reach throughout the globe and ensure polluters have nowhere to hide.

Protecting wildlife from the bad guys: Many scientists believe the Earth currently is facing an extinction crisis, with wildlife and their habitats disappearing at unprecedented rates.   

But SkyTruth’s Conservation Vision program using satellite imagery and machine learning can help. Beginning in 2020, SkyTruth is partnering with Wildlife Conservation Society to train computers to analyze vast quantities of image data to alert rangers and wildlife managers to threats on the ground. These threats include roads being built in protected areas, logging encroaching on important habitats, mining operations growing beyond permit boundaries, and temporary shelters hiding poachers. With better information, protected area managers can direct overstretched field patrols to specific areas and catch violators in the act, rather than arriving months after the fact.  It can alert rangers before they discover a poaching camp by chance (and possibly find themselves surprised and outgunned).

To make this revolution in protected area management possible we will be building a network of technology and data partners, academic researchers, and other tech-savvy conservationists to make the algorithms, computer code, and analytical results publicly available for others to use. By publicly sharing these tools, Conservation Vision will enable others around the world to apply the same cutting-edge technologies to protecting their own areas of concern, launching a new era of wildlife and ecosystem protection. In 2020 we expect to undertake two pilot projects in different locations to develop, refine, and test Conservation Vision and ultimately transform wildlife protection around the world.

Identifying mountaintop mining companies that take the money and run. SkyTruth’s Central Appalachia Surface Mining database has been used by researchers and advocates for years to document the disastrous environmental and health impacts of mountaintop mining. Now, SkyTruth is examining how well these devastated landscapes are recovering.

Figure 2. Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

To do this, we are generating a spectral fingerprint using satellite imagery for each identified mining area. This fingerprint will outline the characteristics of each site, including the amount of bare ground present and information about vegetation regrowth. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest. 

Under federal law, mining companies are required to set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. But the rules are vague and vary by state. If state inspectors determine that mine sites are recovered adequately, then mining companies reclaim their bonds, even if the landscape they leave behind looks nothing like the native forest they destroyed. In some cases, old mines are safety and health hazards as well as useless eyesores, leaving communities and taxpayers to foot the bill for recovery. SkyTruth’s analysis will provide the public, and state inspectors, an objective tool for determining when sites have truly recovered and bonds should be released, or when more should be done to restore local landscapes.

Characterizing toxic algal blooms from space: Harmful algal blooms affect every coastal and Great Lakes state in the United States. Normally, algae are harmless — simple plants that form the base of aquatic food webs. But under the right conditions, algae can grow out of control causing toxic blooms that can kill wildlife and cause illness in people. 

 SkyTruth is partnering with researchers at Kent State University who have developed a sophisticated technique for detecting cyanobacteria and other harmful algae in the western basin of Lake Erie — a known hotspot of harmful algal blooms. They hope to extend this work to Lake Okeechobee in Florida. But their method has limitations: It uses infrequently collected, moderate resolution 4-band multispectral satellite imagery to identify harmful blooms and the factors that facilitate their formation. SkyTruth is working to implement the Kent State approach in the more accessible Google Earth Engine cloud platform, making it much easier to generate updates to the analysis, and offering the possibility of automating the update on a regular basis.  We anticipate that this tool eventually will enable scientists and coastal managers to quickly identify which algal blooms are toxic, and which are not, simply by analyzing their characteristics on imagery.

Revealing the extent of fossil fuel drilling on public lands in the Colorado River Basin: Modern oil and gas drilling and fracking is a threat to public health, biodiversity and the climate. For example, researchers from Johns Hopkins University used our data on oil and gas infrastructure in Pennsylvania to examine the health effects on people living near these sites and found higher premature birth rates for mothers in Pennsylvania that live near fracking sites as well as increased asthma attacks.

The Trump Administration is ramping up drilling on America’s public lands, threatening iconic places such as Chaco Culture National Historical Park in New Mexico. Chaco Canyon is  a UNESCO World Heritage Site that contains the ruins of a 1,200 year-old city that is sacred to native people. According to the Center for Western Priorities, 91% of the public lands in Northwest New Mexico surrounding the Greater Chaco region are developed for oil and gas, and local communities complain of pollution, health impacts and more.

Figure 3. Chaco Canyon Chetro Ketl great kiva plaza. Photo courtesy of the National Park Service.

In 2020 SkyTruth will deploy a machine learning model we developed in 2019 that identifies oil and gas drilling sites in the Rocky Mountain West with 86.3% accuracy. We will apply it to the Greater Chaco Canyon region to detect all oil and gas drilling sites on high-resolution aerial survey photography. We hope to then use these results to refine and expand the model to the wider Colorado River Basin. 

Local activists in northwestern New Mexico have fought additional drilling for the past decade. Last year, New Mexico’s congressional delegation successfully led an effort to place a one-year moratorium on drilling within a 10-mile buffer around the park. Activists view this as a first step towards permanent protection. SkyTruth’s maps will help provide them with visual tools to fight for permanent protection.

A new SkyTruth website: We’ll keep you up to date about these projects and more on a new, revamped SkyTruth website under development for release later this year. Stay tuned for a new look and more great SkyTruthing in the year ahead!