Drops in the Bucket: Oil and Gas Lease Sales Near Chaco Culture National Historical Park

Approximately 20 miles from Chaco Culture National Historical Park lie 4 parcels of public land. These parcels have a combined size of 843 acres, and on January 21st, 2017 the oil and gas drilling rights to these parcels were auctioned off to drilling companies by the US Bureau of Land Management for $2.93 million. New Mexico has a total land area of 77,816,960 acres. These 843 acres correspond to a whopping 0.00108 % of the state’s total area, just a small drop in the bucket.

The Bureau of Land Management provides data on all the leases of fluid mineral rights (oil and gas) which have been issued since 1929. At the time of sale, the most recent data from the BLM was listed as last updated on December 1st, 2016 (you can access the data here, it has since been updated). At that time the BLM database showed that 4,498,543 had been leased. The sale of these 4 parcels brought the total to 4,499,386 acres. That is 5.782% of New Mexico’s total land area.

Looks like those small drops add up…

The ruins of Pueblo Bonito. Image credit: National Park Service.

The impact of drilling — the 24/7 noise, lighting, dust, diesel fumes, air pollution, heavy truck traffic, and the risk of spills and other accidents that can pollute surface and ground water — goes well beyond the boundaries of the lease parcels. So the location of these leases matters. Chaco Canyon is a place of deep cultural and historical significance, anchored by the ruins of the massive Pueblo Bonito housing and ceremonial complex dating to the mid-800’s CE. The Navajo Nation recently joined with multiple tribes represented by the All Pueblo Council of Governors to call for a halt to leasing in the region.

Let’s take a virtual tour of the oil and gas leasing near this uniquely special place. Is it too close for comfort?

This video is a simulated Flyover of Chaco Culture National Historical Park and a set of nearby Oil and Gas leases which were auctioned off in January of 2017. The park is displayed in green, the auctioned leases in red. The video also denotes the location of several existing oil and gas wellpads using red arrows, and closes by showing the extent of existing oil and gas leases in the state of New Mexico.

For a “real” flyover tour of the park and the drilling around it, check out this video from our friends at EcoFlight.

Fracking, Mountaintop Mining, and More…My Summer at SkyTruth

 Hi, my name is Jerrilyn Goldberg.  Over the course of  two months last summer I worked as an intern at SkyTruth. In September I started my junior year at Carleton College in Northfield, Minnesota, majoring in environmental studies and physics. Over the course of my internship I contributed to SkyTruth’s Mountaintop Removal (MTR) research by creating a mask to block out rivers, roads, and urban areas that could be confused with mining activity by our analytical model. I also helped classify many of the ~1.1 million control points that allow us assess the accuracy of our MTR results.

To analyze the accuracy of the MTR results we obtained through our Earth Engine analysis, we dropped 5,000 randomly distributed points at each of 10 sample areas for each year between 1984 and 2016. These points were manually classified as being `mine` (if it overlapped a user IDed mine location) or `non-mine` (if it overlapped anything other than a mine). A subset of those manually classified points were then used to assess the accuracy of the output from our Earth Engine analysis

In addition to the MTR project, I created a story map illustrating the development of Marcellus Shale gas drilling and hydraulic fracturing (fracking) in Pennsylvania, and discussing the environmental and public health consequences fracking is having on some rural Pennsylvania communities. Check it out here. Through my research for the story map, I learned about the hydraulic fracturing process. I also learned about many of the political and social complexities surrounding the fracking industry in Pennsylvania, including conflicts between economic and community interests. Our goal with this story map is to present an accessible and accurate narrative about the fracking industry in Pennsylvania, which begins with understanding what’s actually going on now.

Click the image above to visit Jerrilyn’s interactive story map.

I started by learning about SkyTruth’s FrackFinder Pennsylvania data and methodology from the 2013 project. I read through our GitHub repository and figured out why the FrackFinder team chose their methodology and what the results represented. (While I was familiar with the general concept of the project, I did not know much about the specifics beforehand.) With this in mind, I set out to update the dataset with well pads built after 2013.

 

I quickly realized that this task presented many questions such as, which of the many state oil and gas datasets actually contained the information I sought. I selected the Spud Data, which contains all of the individual locations where operators have reported a drilling start-date for a permitted well. I filtered to include only unconventional horizontal wells drilling for natural gas and excluded those reported as ‘not drilled.’ To account for some missing drilling locations which I noticed while reviewing the latest Google base map imagery, I also download the Well Inventory Dataset which includes all permitted oil and gas wells along with their status. From here I filtered out all the spuds and wells not listed as drilled in 2014, 2015, or 2016 and joined the files. After joining the layers, I formed a well pad dataset by creating a 150 meter buffer around the wells, dissolving overlapping areas, then locating the centers of each buffer. This step effectively says ‘create a 150 m radius circle around each point, but when these overlap, clump them into one circle, then find the center of that new circle.’ Finally, I found all the buffers that overlapped with FrackFinder drilling locations from 2013 and earlier, and eliminated all of those centroids.

A quick note about the imagery: USDA collects high resolution aerial imagery as part of the National Agriculture Imagery Program (NAIP), which at the time of my project was last collected for Pennsylvania in 2015. While I worked hard to eliminate inaccurate points, I was unable to verify all of these with the existing NAIP imagery. That said, I found that the other points accurately represented the general well pad locations and thus chose to include the points for the first half of 2016, even though I obviously couldn’t verify the existence of those recent drilling locations on the mid-summer 2015 NAIP imagery.

 

At the same time I found The Nature Conservancy’s (TNC’s) 2010 Energy Impact Analysis, which looked at the predicted development of wind, shale gas, and wood fuel usage in Pennsylvania. Part of TNC’s study identified three construction scenarios for how many wells and well pads could be built in Pennsylvania by 2030. With an assumption that 60,000 new wells would be drilled between 2010 and 2030, the study predicted between 6000 and 15000 new well pads would be built to host those wells. Each scenario featured a different distance between pads and a different number of wells per pad (because that number stays constant at 60,000 new wells). I found some data from TNC’s study hidden on an old SkyTruth backup with help from Christian and David. With the FrackFinder data, my update, and the ‘informed scenarios’ in hand, I started trying to figure out an appropriate way to synthesize the three datasets, to identify which TNC drilling scenario best fits what is actually happening..

 

One roadblock in conducting a thorough analysis and comparison was that TNC’s research makes a quantitative prediction about the possible volume of infrastructure development instead of a more tangible spatial prediction. The study distributes the predicted numbers of new well pads across the counties of Pennsylvania, which overlay the region of Marcellus Shale with ideal conditions for hydraulic fracturing for natural gas. All of the included counties now contain at least one well pad. I did notice that since 2010, about 1/3 of the well pads estimated by the low impact scenario (6000 well pads) have already been constructed. If the rate of development between 2010 and 2016 remains constant, Pennsylvania will surpass TNC’s low impact scenario.

An example of The Nature Conservancy’s “low” impact scenario for fracking well construction across a section of Pennsylvania.

The Nature Conservancy’s medium impact scenario for future fracking well construction across a section of Pennsylvania.

The Nature Conservancy’s high impact scenario for future fracking well construction over a section of Pennsylvania.

 

Fracking Pennsylvania” uses maps and other media to create a narrative of hydraulic fracturing and its consequences. While originally intended for the community members we work with in southern Pennsylvania, I hope this story map becomes a useful tool for many different communities grappling with fracking.

 

While I have my time in the Watchdog spotlight, I want to publicly thank everyone here for welcoming me into the awesome world of SkyTruth. I’m so grateful for the learning opportunities I had last summer and for all of the support I received. Special thanks to Christian for introducing me to SkyTruth and to John for helping me improve my Story Map even though he is definitely one of the busiest people in the office. I look forward to sharing my experience through the Carleton Internship Ambassador program this year.  

FrackFinding Success in Three States

Since the launch of FrackFinder, we’ve found great success in our efforts in Pennsylvania, Ohio, and West Virginia enlisting the public to help us analyze aerial imagery across the Marcellus and Utica shale gas-drilling regions. The results have been unique datasets that are being used, or can be used, by researchers to study the impact fracking has on public health and the environment. What we’ve learned is helping us refine our tools and methods for future rounds of FrackFinder. Here we’ll give a rundown of the results of our efforts and what we’ve done with them, as well as links to the data we’ve made available free for public use.

Pennsylvania Fracking Sites Map

Our motivation behind the FrackFinder project was to fill gaps in publicly available information related to where fracking operations in the Marcellus Shale were taking place. Seeing an opportunity to make this info available to the public, but lacking state data, we began mapping fracking sites ourselves. The locations of drilling sites, also known as “well pads,” were hard to come by, but state permits for drilling individual oil and gas wells were easily accessible. Unfortunately drilling permits aren’t very useful on their own. The permits are just approvals to drill: they don’t say if the site is active, when drilling and fracking began or ended, or if development of the drill site ever happened at all. Luckily, each permit provides the exact location where the operator is authorized to drill their well. By pairing the location information from the permits with available high-resolution aerial survey photography from multiple years, it is possible for us to learn where active well pads are and narrow down when they were built to within a span of a couple of years.

Of course, analyzing multiple years’ worth of imagery for thousands of permit locations is a monumental task.  To get the job done, we looked to crowdsourcing to speed up the process. Crowdsourcing also gives us the opportunity to reach the public, get people interested in citizen science, and provide them the opportunity to see the impact of fracking for themselves. It’s important for people to understand the large footprint fracking has compared to historical oil and gas drilling in the region, and seeing just how close many well pads are to farms and homes can change some people’s perspective on the issue.

Timelapse image showing how close drilling is to homes, and how big modern fracking operations are.

Our first phase of FrackFinder took place in Pennsylvania.  For this project we had 3,000 locations to examine on three different years of imagery, and we asked 10 volunteers to look at every site: a grand total of  90,000 image analysis tasks. Participants were presented with an image of a location corresponding to a drilling permit and were asked to determine if the site was active or inactive on the basis of visible infrastructure.  All the tasks were knocked out in three weeks, thanks in part  to a Washington Post article mentioning the project published around the time of our FrackFinder launch. In the quality assurance phase, we found that if seven of the ten participants for a given task agreed there was active drilling then our experienced in-house analysts agreed with the crowd, so we established 70% crowd consensus as an acceptable threshold to confirm if there was indeed drilling at a location.  This first project went so well that we quickly supplemented it with another year of imagery.  The final map we produced shows the location of active well pads in imagery from 2005, 2008, 2010, and 2013, and we intend to update it with 2015 imagery in the near future.

Marcellus Shale fracking sites in Pennsylvania in 2005, 2008, 2010, and 2013. Click on this image to link to the full interactive map.

Pennsylvania Impoundments Map

Not long after publishing the data on well pad locations from the first phase, we were approached by researchers from Johns Hopkins University who were interested in our data. They wanted to study the public health impacts of living near a modern fracking site, and the state couldn’t provide anything comparable to what we had at the time. They were specifically interested in how volatile chemicals coming off drilling-related fluid impoundments would affect people living nearby. While we had locations for the wells from our first FrackFinder project, we didn’t have information on the size, location and timing of the impoundments that may contain drilling and fracking fluids.

Hydraulic fracturing-related fluid impoundments in Pennsylvania. Click on the image to link to the full interactive map.

Using the same imagery we had prepared for the first round of FrackFinder, we launched another round of crowd-assisted image analysis using the same methods to determine the presence of impoundments. After the public identified water bodies that were likely related to drilling, our analysts verified that they were impoundments and delivered the data to the researchers. The Pennsylvania FrackFinder project was the first time we used crowdsourcing to create a high-quality data set for use in actual research.  And it has paid off in improving the public’s understanding of the health risks posed by living near modern drilling and fracking activity. The Johns Hopkins researchers have published the following peer-reviewed studies based in part on our work:

Ohio Well Pads Map

Ohio was the first state outside of Pennsylvania to have its own FrackFinder spinoff. Instead of launching a public crowdsourcing project we enlisted the help of students at Walsh University in Ohio who were interested in studying the impact of fracking on the environment and looking to get experience with GIS image analysis. We asked students to delineate all terrain that was modified to accommodate the drilling activity, including forest clearcutting around actual fracking infrastructure. This not only provided an educational opportunity for the students, but it allowed us to build and experiment with tools we plan on using in the future to let the public delineate fracking sites and create complex polygons, rather than simply confirming the presence or absence of a well pad at a specific point. This work hasn’t been used for research yet, but it still produced a high-quality data set that is available to anyone who would wish to use it in the future to quantify the ecological footprint of fracking-related land use, and explore the habitat and ecosystem impacts of modern drilling and fracking.

Utica Shale fracking well pads in Ohio. Click on the image to link to the full interactive map so you can zoom in and see the outlines of fracking sites delineated by students at Walsh University.

West Virginia Well Pad and Impoundment Map

Due to time constraints, we conducted the first round of West Virginia FrackFinder internally, and now have a multiyear map and dataset showing the locations of Marcellus and Utica Shale drilling sites statewide. We plan on launching a new public FrackFinder round this summer using the same area delineation technique that was demonstrated in Ohio. In West Virginia, we delineated the footprints of well pads and fluid impoundments, but not the broader area of clearcutting and landscape modification surrounding the drilling sites as was done in Ohio. When we launch our next public FrackFinder round we will ask the public to delineate this “impact halo” around well pads to help determine the ecological footprint of fracking in the state.

Marcellus and Utica Shale fracking sites in West Virginia in 2007, 2009, 2011, and 2014. Click on the image to link to the full interactive map.

 

Fracking-related fluid impoundments in West Virginia for the same years as the map above. Click to go to the full interactive map.

The data we produce for West Virginia is being used by researchers at UC Berkeley and at Downstream Strategies. They will perform a geospatial proximity analysis to see how fracking activity near sensitive populations in schools, hospitals, homes, and rehabilitation centers, paired with different chemicals used in fracking, affects public health. The results of their research will be detailed in a comprehensive white paper that will be published with policy makers in mind.

The Problem(s) with Pipelines: An Anthology

On Sunday, Dec. 4 the Army Corps of Engineers issued a decision which will again delay construction of  the Dakota Access Pipeline (DAPL). The ruling was cheered by water protectors entrenched in the path of the pipeline at the Standing Rock Sioux Reservation. These representatives of indigenous nations, environmental activists, veterans, and many other groups have been resisting pressure from private security and law enforcement officers from at least 76 different state and federal agencies or departments, as well as enduring sub-zero blizzard conditions. However, the ruling does not definitively end the controversy, it only delays the decision until further environmental impact studies are conducted.

Unfortunately the choices before the Army Corps appear to be limited, given the fact that as much as 87% of the North Dakota portion of the pipeline is already complete, and nearly 50% of the almost $3.8 billion dollar project is completed and/or in the final stages of cleanup and reclamation. Furthermore, any further environmental impact study and public comment for the Army Corps could easily hand the decison over to Trump Administration which has expressed support the pipeline (despite the obvious conflict of interest with the President-Elect owning stock in several of the key companies involved).  So while hands are wrung and ink is spilled on the specifics of this pipeline, let’s take a look at why people around the world are rallying  in opposition to ANY new pipelines.

The short answer is 1) accidents happen, and 2) they are multi-million dollar investment projects which further lock us into years, even decades, of fossil fuel extraction and emissions.

You can explore this map of pipeline spills and releases from our friends at FracTracker, but what exactly do some of these incidents look like on the ground and in the water? Here are some of the most egregious cases from the past decade.

Belle Fourche Pipeline Leak, Dec. 10, 2016. Image Credit – Jennifer Skjod, N. Dakota Dept. of Health

Western North Dakota, near Belfield – December 5, 2016: Just this month, less than 150 miles from Oceti Sakowin Camp, a leak was discovered in the Belle Fourche pipeline. An estimated 176,000 gallons leaked and crews are reportedly testing whether or not they can burn some of the spilled oil to stop further spread of the oil.

As of Dec. 15, ten days after the spill was discovered, less than 1/3rd of the oil had been recovered. But this is the not the first time that True Companies, the pipeline operator, has been in the news.

Yellowstone River, northeastern Wyoming – January 17, 2015: True Company/Bridger Pipeline’s Poplar oil line leaked 32,000 gallons of oil into the Yellowstone River, a tributary of the Missouri River (and by extension, upstream of Standing Rock). The pipeline was supposed to be buried eight feet beneath the river bed, but after the spill investigators discovered that the pipeline had become completely exposed. And it wouldn’t be the first time for the Yellowstone River. In July 2013, an Exxon pipeline also leaked 63,000 gallons of oil directly into a different section of the river when it too became exposed and was damaged by flood debris.

Oil is hard enough to remove from water, but what about when that oil sinks?

Kalamazoo River, Michigan – July 25, 2010: In south-central Michigan a thirty-inch pipeline carrying diluted bitumen from Canada blew a six-foot gash along a corroded seam, releasing 843,000 gallons of heavy oil product into the Kalamazoo River. Canadian energy transporter Enbridge, the operator of the pipeline, would ultimately be deemed responsible for the largest inland oil spill in U.S. history, with a U.S. National Transportation Safety Board (NTSB) official comparing the company’s spill response to the “Keystone Cops.

Fittingly, the Enbridge spill quickly became Exhibit A in the fight against the Keystone XL pipeline which was ultimately rejected by President Obama in 2015. While scientists and activists debated whether or not tar sands bitumen diluted for transport was more corrosive to pipelines than regular oil,  another major tar sands pipeline would make headlines.

Mayflower, Arkansas – March 29, 2013: In a quiet Arkansas suburb, Exxon Mobil’s Pegasus pipeline burst, spilling an estimated 210,000 gallons of tar sands bitumen through a residential subdivision and into nearby Lake Conway. With assistance the Arkansas Chapter of Sierra Club, we used satellite imagery taken before and after the disaster to document the impact on the community and nearby public lands.

But it is not just the United States concerned about new oil pipelines. Our neighbors in Canada have also had their fair share of pipeline accidents and have their own slate of new pipeline projects concerning them.

Burnaby, British Columbia –July 24, 2007 : On a warm summer afternoon in British Columbia, a contractor’s backhoe struck the Transmountain Pipeline near Westridge, releasing a gusher of over 59,000 gallons of crude oil into a residential neighborhood. But in 2016, Canadian Prime Minister Justin Trudeau recently approved Kinder Morgan’s plans to expand the Transmountain Pipeline, while making moves to block Enbridge’s Northern Gateway pipeline.

In addition to spills on land, locals are deeply concerned about the risk of oil spills from increased oil tanker traffic along the coasts. Those concerns were brought back to the fore when a tug boat, the Nathan E. Stewart, ran aground near Bella Bella, B.C. while pushing an empty fuel barge. Even without any cargo in the barge, fuel and hydraulic fluids from the tug contaminated the shoreline and shellfish beds while it took over a month to extract the Stewart from its watery resting place.

These spills have all focused on oil pipelines, but natural gas and refined petroluem pipelines pose their own unique threat.

Sissonville, West Virginia – December 11, 2012: Here in the Mountain State, an aging 20-inch transmission line exploded a few years ago, enveloping Interstate 77 in a wall of flames and destroying several homes. Fortunately there were no fatalities. The pipeline was constructed in the 1960’s.

Salem Township, Pennsylvania – April 29, 2016: More recently, a thirty-inch gas transmission line in western Pennsylvania exploded, destroying a house and hospitalizing a 26-year-old with third-degree burns over 75% of his body. The Spectra Energy transmission line was installed in the 1980’s.

Shelby County, Alabama – Oct. 31, 2016: An excavator conducting repairs from a prior incident on the Colonial Pipeline struck the massive gasoline transmission line, causing a fiery explosion and ultimately killing two. The Colonial Pipeline provides the East Coast with 40% of the gasoline consumed and is the largest petroleum distribution system in the U.S.

As we have published before, even the Obama Administration has fallen short in addressing serious concerns surrounding pipeline safety. For all of the claims that modern pipelines will be safe and loaded with spill-prevention tech, we’ve yet to see clear evidence of this technology stopping major spills. Even in the Gulf of Mexico, Shell recently lost 90,000 gallons of oil from a subsea pipeline but the person credited with discovering it was not the pipeline operator, but a helicopter pilot who just happened to be passing by.

Even assuming that we could put an end to this litany of disasters, many people are standing up to pipelines because each new project is a multi-million dollar commitment to perpetuate further fossil fuel extraction and consumption for decades to come. In some states and regions, New England for example, companies have proposed passing the construction costs on to ratepayers, even those who don’t consume the gas directly.  If this subject concerns you, we urge you to investigate what kind of pipeline proposals may be in the works in your region. Here are just a few we are aware of:

Mountain Valley Pipeline – West Virginia, Virginia. Interstate natural gas transmission line. Public Comments due Thursday, Dec. 22, 2016

Mountaineer Gas – Washington Co., Maryland; Morgan, Berkeley, and Jefferson County, West Virginia: Local natural gas distribution system. More info on public comments and meetings – Eastern Panhandle Protectors

Trans Mountain Pipeline – British Columbia, Canada. Oil pipeline. More info from Dogwood.

Pacific Connector LNG – Oregon. Natural gas pipeline associated with an LNG terminal for export. More info on the pipeline and Jordan Cove LNG terminal at Citizens Against LNG.

Rover Pipeline – Pennsylvania, Ohio, Michigan. Interstate gas transmission line. More info from Ohio River Citizens’ Alliance

Buckingham Compressor Stations – Virginia. An infrastructure upgrade linked to the planned Atlantic Coast Pipeline. More info at Friends of Buckingham, Virginia.

Atlantic Coast Pipeline – West Virginia, Virginia, North Carolina. Interstate gas transmission line. More info from Wild Virginia, Allegheny Blue Ridge Alliance, and Friends of Nelson County.

Bayou Bridge Pipeline – Louisiana. Regional oil pipeline connecting major hubs with refineries. More info from Louisiana Bucket Brigade.

Mariner East 2 – Pennsylvania. Intra-state gas liquids transmission pipeline. More info from FracTracker.

Pilgrim Pipeline – New York, New Jersey. Interstate oil pipeline. More info from the Coalition Against Pilgrim Pipeline.

Sabal Trail Pipeline – Alabama, Georgia, Florida. Interstate natural gas transmission pipeline. More info from Stop Sabal Trail Pipleline.

Know of other pipeline projects that should be listed here? Shoot us an email: info@skytruth.org

Confirmed: EPA Findings Edited to Downplay Fracking Impacts

Documents obtained by journalists at Marketplace and APM Reports revealed that federal officials made eleventh-hour edits to the Environmental Protection Agency’s (EPA) long-awaited Draft Assessment on the Potential Impacts to Drinking Water Resources from Hydraulic Fracturing Activities. The unsubstantiated edits downplayed the risks of hydraulic fracturing leading to a flurry of headlines claiming the EPA found little risk in fracking.

In fact, the more nuanced language of the report found evidence of contamination events and threats to groundwater, but ultimately the EPA lacked the data to conclude if fracking was having “widespread, systemic impact…” on drinking water. We wrote about these contradictions between the EPA press release and the actual report in June 2015 post entitled:

Word Games Continue: Just What Evidence Did EPA Not Find?

Earlier in 2016 the EPA Science Advisory Board also criticized the edited conclusions and called on the Agency to substantiate their claims or consider revising the report.

Words matter. Science matters. Don’t take headlines and executive summaries for granted, especially as we head into a political transition already swamped with climate deniers and a who’s who of the fossil fuel industry. Become as informed as you can from primary sources, and also support watchdogs and journalists who have proven effective at accurately reporting on what is happening in the world.

Read the full story from Marketplace and APM Reports:

EPA’s late changes to fracking study downplay risk of drinking water pollution

Impact Story: Chevron Spill May Have Reset the Tone for Oil Boom in Brazil

chevron_post

2011 turned out to be both a banner year for Brazilian oil exploration and a big eye-opener for the people of Brazil. Fueled by the discovery of 19 new oil and gas reserves and hungry for the spoils, big multi-national companies poured billions of new investment dollars into the South American nation.

Most Brazilians expressed little concern over the potential safety risks of the offshore boom. But then SkyTruth president John Amos noticed an inconspicuous report of a seemingly insignificant oil leak buried in the daily cycle of business news.

On November 8, 2011, Reuters reported that Brazil’s oil regulator, the National Petroleum Agency (ANP), was investigating an offshore oil leak near Chevron’s Frade field, 230 miles from the coast of Rio de Janeiro. According to the report, Chevron was checking to see if oil was leaking from a crack in the seafloor.

When John reviewed satellite photos of the area, he saw a slick originating near an exploratory drilling site that extended for 35 miles and covered about 180 square kilometers. By his estimates the sheen on the water represented about 47,000 gallons of oil.

Three days later it had grown to 56 miles in length, and Chevron had declared it a natural seep unrelated to their drilling activities. “It is possible, but call us skeptical,” John posted on our blog. “From my previous years working as an exploration geologist I know there are natural seeps off Brazil. But I’ve never seen a natural seep create a slick this large on a satellite image.” What’s more, comparisons with historical satellite photos showed the slick had not been there before.

Over the following days we watched the spread of oil on the water’s surface. While Chevron maintained that it was natural and estimated a leak rate of 8,400 to 13,860 gallons (200 -330 barrels) per day, John posted satellite images that hinted at a much bigger problem. By his analysis the spill was leaking 157,000 gallons (3,700 barrels) per day. That was more than ten times the official estimate.

John’s reports and the indisputable images he posted gained international media attention,  spurred a vigorous discussion on our site, and led to a public outcry in Brazil.

Unable to hide the true nature of the spill, Chevron came under scrutiny from Brazilian legislators and state agencies, and the tone of their official story began to shift.

Under pressure for more transparency, the oil and gas giant eventually conceded they had lost control of a well. They claimed the pressure of the reservoir had exceeded their expectations and forced oil up through fissures in the seafloor.

Kerick Leite who was working for ANP in offshore inspections at the time reflects on the situation this way: “In my opinion, if were not for SkyTruth’s independent assessment of the spill existence and size, I believe the Chevron Spill would have been dismissed as a minor one,” says Leite, “maybe even a natural seep, as initially reported, and remain mostly unknown by the public even today.”

According to the New York Times, Brazil’s former environment minister, Marina Silva, said “This event is a three-dimensional alert to the problems that may occur.” She told the Times that the spill served as a warning just as Brazil was preparing to expand its oil production and exploit its tremendously rich presalt reserves—an extremely complicated process because the presalt lies in 10,000 feet of water beneath thick layers of sand, salt and rock.

As a result of the spill and Chevron’s misleading response, the ANP banned the company from all drilling activities in Brazil onshore and off, pending a full investigation. After lengthy court battles, the company ended up paying  24 violations, and the company paying $17 million in fines to the ANP, more than $18 million to the Brazilian Ministry of the Environment, and $42 million to settle civil lawsuits.

What’s more, it emphasized how small the playing field is in the deepwater oil and gas drilling industry. As we learned through our Twitter followers, the drilling contractor on the job had been Transocean—the same company involved in the disastrous BP / Deepwater Horizon spill in the Gulf of Mexico just a year earlier. Brazil dodged a bullet with this accident, but the new understanding of how bad it might have been made Brazilians pay attention.

“It was a wake-up call,” said John. “These are multi-national organizations. The same contractors are working for most of the major name-brand oil companies. This kind of thing can happen anywhere.” Chevron’s reluctance to claim culpability and their delayed response to the spill drove home the need for diligence in regulation and enforcement by Brazilian authorities.

Leite said the spill has led to increased public awareness and concern over safety in the oil and gas industry in Brazil that persists today. “I believe the issue of offshore safety now has more priority than before the chevron spill,” he says. “Back when I still worked at the ANP sector dedicated to environmental issues and operational safety, it had around 16 to 18 servants. Today there are around 40 servants dedicated to it.”

It was a full year before Chevron was allowed to resume doing business Brazil. During that time, a significant portion of the company’s global investments remained inaccessible to them. We hope the loss of profits, over and above the fines levied by Brazilian authorities, will provide incentives for Chevron to do a better job and will send a message to other oil and gas companies. Accidents can no longer be hidden or brushed aside. Chevron’s Frade field spill demonstrated that a satellite image can be worth a thousand words — and in this case, millions of dollars.

 

Impact Story: BP Spill — Using Science to Hold BP and Federal Regulators Accountable

bp_story_slider

Within a day of the April 20, 2010 explosion on BP’s Deepwater Horizon drill rig in the Gulf of Mexico, we began our high tech surveillance of the spill. Examining satellite images and aerial survey data, SkyTruth quickly became a leading source of independent, unbiased information on the size and scope of the disaster.

It was the largest oil spill in the nation’s history, releasing almost five million barrels of oil into the Gulf of Mexico. As bad as it was, it could have been even worse. Had BP continued to downplay the extent of the disaster, delaying mobilization of the appropriate response, it may have taken even longer than the 87 days it took to cap the well. Our work challenged the official story, spurred government science agencies to get off the sidelines,  and opened a public dialogue about the magnitude of the risk posed by modern offshore drilling..

Throughout the spring and into mid-summer of 2010, as BP’s disabled well continued to pump oil into the Gulf, SkyTruth president John Amos was quoted in hundreds of news reports, and his interpretation and analysis of the raw imagery helped policy makers, the press and the general public make sense of events as they unfolded.

SkyTruth also played a vital watchdog role. One week after the accident, we raised concerns that the amount of oil spilling into the Gulf was likely much higher than the 1,000 barrels-a-day estimated by BP and repeated by government officials. The New York Times and other media outlets picked up the analysis published on the SkyTruth blog on April 27. The next day, government officials publicly broke ranks with BP and raised its estimate to 5,000 barrels a day, the amount we had initially calculated.

John and other independent experts kept the issue in the headlines by presenting new estimates of 20,000 and then 26,500 barrels per day as new images and data became available, leading the public to question whether BP was low-balling the spill rate. On May 4th, the company privately acknowledged the possibility that the well was likely gushing as much as 60,000 barrels of oil a day, 10 times more than the government had previously estimated.  (Later, the government’s scientific teams concluded that the higher estimate was closer to the truth; they estimated that 53,000 barrels were leaking each day immediately before the well was capped on July 15.)

image gallery

While NASA and the governments of several foreign countries made their satellite images freely available, without organizations like SkyTruth to interpret those images, the public may have never known the true impact of the spill.

Equally important, we invited people directly into the conversation. Tens of thousands visited our website, blog, Twitter and Facebook pages. During the first ten days of June, for instance, our Blog received more than 70,000 visits – 25,000 in a single day. Meanwhile, our Oil Spill Tracker site, deployed on the fly in the first days of the spill, allowed Gulf residents to act as citizen journalists posting commentary and observations, as well as photos and videos of oil awash on the beaches and petroleum-drenched wildlife.

Oceanographer Ian R. MacDonald, who collaborated with the organization during the three-month Gulf spill and an earlier one in Australia’s Timor Sea in 2009, likens SkyTruth’s mission to that of “a fire truck.”

“When there’s an emergency, SkyTruth is there,” says MacDonald, a professor at Florida State University and one of the world’s foremost experts in remote sensing of oil slicks. “From the beginning of the BP spill to the end, SkyTruth was a public source of very timely raw satellite images and interpreted products, as well as a thoughtful commentary that pulled in the views of other people.”