AIS Ship Tracking Data Shows False Vessel Tracks Circling Above Point Reyes, Near San Francisco

Analysis from SkyTruth and Global Fishing Watch shows ship tracks jumping thousands of miles from their true locations.

Bjorn Bergman works with SkyTruth and with the Global Fishing Watch research team to track vessels broadcasting false automatic identification system (AIS) locations and to investigate new sources of satellite data for vessel tracking and for detecting dark targets at sea. In this blog post, Bjorn spots an unusual pattern of false AIS broadcasts concentrated at one location, Point Reyes, northwest of San Francisco on the California coast. Why would vessels thousands of miles away be suddenly popping up in circles over Point Reyes? Could this reflect an intentional disruption of the underlying global positioning system (GPS) that AIS relies on, or is there some other explanation for this pattern?

In December 2019, SkyTruth reported on a number of locations on the Chinese coast (mostly oil terminals) where ship tracking positions from the automatic identification system (AIS)  became scrambled as soon as ships approached within a few miles of a point on shore. Importantly, we knew that this was actual disruption of the underlying global positioning system (GPS) — or more broadly the Global Navigation Satellite System — and not just a shipboard AIS malfunction. We determined this because another source of GPS data, Strava’s heat map of fitness trackers, showed the same ring pattern. A quick recent check of the data showed that this GPS manipulation is ongoing at oil terminals in four of the cities (Shanghai, Dalian, Fuzhou, and Quanzhou) where we had detected it last year. We still don’t know if this manipulation is specifically intended to mask ship traffic or if there is some other reason for disrupting GPS.

Following the findings last year on the Chinese coast, I began looking globally for any similar patterns in AIS tracking data around the world. While I haven’t found the precise pattern observed at the Chinese oil terminals outside of China, I did find a somewhat different false AIS broadcast pattern which, strangely enough, appears concentrated above Point Reyes northwest of San Francisco, California in the United States. Although the circling tracks look similar in both locations, the vessels on the Chinese coast were at most a few miles from the circling tracks, while the vessels broadcasting tracks above Point Reyes are actually thousands of miles away. So far I’ve found vessels in nine locations affected. Some of these locations are near oil terminals or where GPS disruption has been reported before, but there is no clear pattern linking all of the affected areas.  

Image 1: AIS tracks from a number of vessels have appeared circling over Point Reyes near San Francisco even though the ships can be confirmed to be thousands of miles away. False circling tracks from five vessels are shown here. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The AIS positions being broadcast over Point Reyes are obviously false (some of them are over land and they show a constant speed and oval pattern we wouldn’t see with a real ship track). But how can we be sure where the ship really is? The most important indication is the location broadcast just prior to the jump to Point Reyes and then where the vessel reappears after the apparent circling finishes. The duration of the circling pattern varies, from less than an hour for one ship in the Indian Ocean, to as much as two weeks for some of the other vessels. However, besides seeing the true locations before and after the jump to Point Reyes, it’s also possible to look at where the AIS receiving satellites were while the vessels were broadcasting positions around Point Reyes.

Image 2: The colored lines show AIS tracks from five of the ships whose broadcast positions jumped suddenly to Point Reyes, California, northwest of San Francisco. The time of the tracking disruption varies from less than one hour for one vessel to about two weeks for some others. Two of the vessels (Princess Janice and Alkahfi Maryam) also have tracks appearing over land in North America. The reason for this displacement is unknown although some of the vessels are in areas where GPS disruption has been reported (Eastern Mediterranean and Sea of Azov). AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

To get an approximate location for one vessel’s real position during the two weeks it broadcast over Point Reyes and the Western United States, SkyTruth analyst Christian Thomas and I analyzed the footprints of the satellites receiving the AIS positions. This was possible thanks to data Spire Global, Inc. provided to Global Fishing Watch. Spire’s data gives the identity of the receiving satellite with each AIS position. This allowed the Global Fishing Watch research team to access orbit information, which they used to calculate exactly the point above the surface of the earth where each satellite was when it received an AIS position and then calculate the distance from the satellite position to the ship’s broadcast AIS position. Because AIS broadcasts are only received within an approximately 5,000 kilometer (3,100 mile) diameter footprint, we know that the vessel was somewhere within this area. We can even narrow down the location further based on successive passes of AIS receiving satellites. 

Image 3: Broadcast AIS positions from Princess Janice. The track makes multiple jumps between a real location in an oil terminal on the coast of Nigeria (inset lower right) and false positions over the United States. Over two weeks in June 2019 the false track initially circles over Point Reyes northwest of San Francisco before veering over the Pacific and over the interior of the United States. More circling is seen around Salt Lake City Utah (inset upper right). AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

This vessel, the Princess Janice, is a crew boat traveling to offshore oil installations. It broadcasts a normal track out of a Nigerian oil terminal until June 5, 2019. For the following two weeks the vessel then broadcasts a false location track circling above Point Reyes and eventually veering off above Utah (during this time the track occasionally jumped back briefly to the Nigerian oil terminal). Unlike other false AIS broadcasts we have documented, which have a constant location offset or flipped coordinate values (producing a mirror image of the actual position), these circling tracks appear to not reflect the true movements of the vessel in any way. 

When we looked at the footprint of the satellite receiving AIS positions from Princess Janice, it’s clear that the vessel remained on a stretch of the central Nigerian coast or in nearby waters in the Gulf of Guinea (see Image 4) throughout the two-week period when false locations were being broadcast. 

Image 4: Princess Janice broadcasts an AIS track over Point Reyes near San Francisco and over the Western United States from June 5 – 21, 2019 (see Image 3). Analysis of the footprints for the satellites receiving these positions demonstrates that the vessel was actually within a region on the central Nigerian coast and adjacent Gulf of Guinea. Frame 1: Location over the Earth’s surface (red dots) of satellites receiving false position messages. Frame 2: Extent of satellite footprints for AIS reception (large red circles). Frame 3: Density of satellite coverage overlap, areas of increasing density shown as Blue → Green → Yellow → White. Frame 4: Area where all satellite footprints overlap (maximum coverage) shown in white. The white shaded region on the central Nigerian coast contains the true location of the Princess Janice during the period when the vessel was broadcasting a false location track. Analysis was done in Google Earth Engine using approximate satellite footprints of 5,000 km (3,100 miles) diameter.

Both the manipulated GPS positions seen on the Chinese coast and these new examples over Point Reyes are characterized by rings of positions. The rings have similar shapes, somewhat wider east to west than north to south. However circles appearing over Point Reyes vary greatly in size and the broadcast vessel courses may be oriented clockwise or counterclockwise around the ring. All speeds are exactly 20 knots. In contrast, the rings on the Chinese vessels last year had positions that were 21 or 31 knots with the 31 knot positions always oriented counterclockwise. Critically, while we could confirm that GPS interference caused the rings of AIS positions on the Chinese coast, we don’t yet know if that is the case with the positions over Point Reyes. An alternative is that this is simply a malfunction affecting the individual ships’ AIS systems. We were able to confirm that the false circling positions over Point Reyes occur in data from all available AIS providers (Orbcomm, Spire, and ExactEarth) and in AIS positions received by both satellites and terrestrial receivers.

The list of affected vessels below (Table 1) shows that many types of vessels in different geographic locations have displayed this same pattern of AIS disruption. Some were in areas where GPS problems have been reported by others (the Eastern Mediterranean, Sea of Azov, Libyan coast); other locations are seemingly random. A number of the vessels, but not all, appear near oil terminals and are involved in supporting offshore platforms. 

TABLE 1.

Table 1: Vessels showing a pattern of false circling AIS positions. Reported locations are where circling tracks appeared (mainly at Point Reyes near San Francisco). Real locations are where the vessel was determined to be while broadcasting the false circling AIS track. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The presence of three of these vessels in areas of documented GPS interference is intriguing. The cargo ship Berezovets shown below was operating in one such area in the Sea of Azov, north of the Black Sea. Following the Russian annexation of Crimea in 2014 and the takeover of Eastern Ukraine by Russian-backed separatists, the front line in the ongoing civil war has cut through Eastern Ukraine north of the Sea of Azov. There have also been conflicts on the water and a Russian blockade of the Kerch Strait leading north from the Black Sea.

Image 5: The Russian flagged cargo ship Berezovets transits through the Sea of Azov in June 2019 and has its AIS track jump suddenly to Point Reyes near San Francisco (inset). Incidents of documented GPS disruption occurred in March 2019 east of the Bilosarai Spit and in July 2019 in the city of Starohnatvka. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The Russian flagged Berezovets transited through the Kerch Strait on June 3, 2019 then headed northeast passing south of the conflict zone towards Russian ports. As the vessel enters Russian waters (location 1 in Image 5) and anchors, its June 4-8 positions broadcast by the AIS system are scrambled, some appearing scattered 20 miles from the vessel’s anchor point. The vessel track then moves east towards port before jumping 20 miles north to a point on land (2) and then jumping about 11,000 miles west to circle above Point Reyes (3). This circling continues for about 60 hours from June 11 – 14, including some irregular positions extending about 40 miles into the Pacific. As with the Princess Janice track, it’s unclear why the false track would jump to California and what accounts for the individual variations in the different tracks we see appearing at this location. On June 14, 2019 the Berezovets AIS track jumps back to the vessel’s real location, now in the Russian port of Azov (4) and can then be seen to proceed eastward up the River Don.  

The unusual disruption in the Berezovets broadcast AIS track was both preceded and followed by similar reported disruptions in GPS in the same region. On March 7, 2019 a Ukrainian military website reported that three vessels on the Sea of Azov experienced failures in their navigation systems. One of these failures occurred the day before, east of Bilosarai Spit (see Image 5). The other two reported disruptions were in the preceding month at other locations in the Sea of Azov. On July 23, 2019 according to a report from the Organization for Security and Co-operation in Europe’s Special Monitoring Mission to Ukraine a UAV (unmanned aerial vehicle) flying over the city of Starohnativka in Ukraine, was one of several UAVs that experienced GPS interference assessed to be likely from jamming. While not conclusive, the proximity of these other reported incidents makes it possible that the disruption seen in the Berezovets track was a result of the GPS interference known to be occuring in the area. 

Two other vessels were also in areas with documented GPS disruptions, Suha Queen II approaching the coast of Libya, and Haj Sayed I transiting from the Suez canal to Eastern Turkey. However, in searching for vessels showing the same circling pattern seen over Point Reyes, I have not yet found that multiple vessels in areas like the Sea of Azov were similarly affected. Global AIS data does show a few vessels with tracks circling over other locations. Two pilot vessels on the Chilean coast had their broadcast positions suddenly jump to circling tracks over Madrid. The Suha Queen II approaching the coast of Libya had its track jump to the Chinese city of Shanwei. The most recent vessel to appear circling over Point Reyes is the Ting Yuk, a tugboat operating in Hong Kong, which had its AIS track disrupted for a few hours at the end of March. 

So far it remains a mystery why these circling AIS tracks are appearing specifically at Point Reyes and a few other locations. It’s tempting to speculate that there might be some connection to a major U.S. Coast Guard communication station in Point Reyes which was an important historic location for developing maritime communications technology. While the Coast Guard left the area several years ago, volunteers continue to maintain at Point Reyes the only operational ship-to-shore maritime radio station. Still, it’s unclear why this location would somehow appear on AIS trackers. The fact that individual vessels in many different locations have been affected is puzzling and it’s unknown if any of these examples reflect actual disruptions of the GPS system. However some studies, such as a yearlong cruise by researchers of the German Aerospace Center which measured instances of GPS interference even during high seas transits, indicate that we may still have a great deal to learn about the true extent of global disruptions to this critical navigation system.

SkyTruth’s West Virginia FrackFinder Datasets Updated

Oil and gas drilling activity in West Virginia continues to expand.

For more than a decade, SkyTruth has been tracking the footprint of oil and gas development in the Marcellus and Utica shale basins in West Virginia, Pennsylvania, and Ohio through our FrackFinder project. Initially, our FrackFinder project relied on volunteers to help us identify activity on the ground (thank you to all you SkyTruthers out there!). Since then, we’ve continued to update this database with help from SkyTruth interns and staff. Today, we’re excited to announce our latest updates to our West Virginia FrackFinder datasets. The updated data now include drilling sites and impoundments that appeared on the landscape through 2015–2016 (our 2016 update) and through 2017–2018 (our 2018 update). In 2016, 49 new drilling sites and 17 new impoundments appeared on the landscape. In 2018, 60 additional drilling sites and 20 new impoundments appeared; an 18% and 15% jump, respectively, from 2016.

With these additions, our West Virginia datasets track the footprint of oil and gas development in the state for more than decade, stretching from 2007 to 2018. 

Image 1. New drilling sites in Tyler County, near Wilbur and West Union, WV

We use high-resolution aerial photography collected as a part of the USDA’s National Agricultural Imaging Program (NAIP) to identify drilling sites and impoundments and make their locations available to the public. NAIP imagery is typically collected every two to three years, so once the imagery from each flight season is available, we  compare permit information from the West Virginia Department of Environmental Protection with NAIP imagery to find and map new drilling sites. Our datasets of what’s actually on the ground — not just what’s been permitted on paper — help landowners, public health researchers, nonprofits, and policymakers identify opportunities for better policies and commonsense regulations. And our data has resulted in real-world impacts. For example, researchers from Johns Hopkins University used our FrackFinder data in Pennsylvania to document the human health impacts of fracking. Their research found that living near an unconventional natural gas drilling site can lead to higher premature birth rates in expecting mothers and may also lead to a greater chance of suffering an asthma attack. Maryland Governor Larry Hogan cited this information in his decision to ban fracking in his state. 

We’ve shared the updated FrackFinder West Virginia data with research partners at Downstream Strategies and the University of California–Berkeley investigating the public health impacts of modern drilling and fracking, and with environmental advocacy groups like Appalachian Voices and FracTracker Alliance fighting the expansion of energy development in the mid-Atlantic.

We are also proud to roll out a Google Earth Engine app, which will be the new home for our  West Virginia FrackFinder data. Users can find all of our previous years’ data (2007–2014) as well as our new 2016 and 2018 datasets on this app. The interactive map allows you to zoom into locations and see exactly where we’ve found oil and gas drilling sites and wastewater impoundments. A simple click on one of the points will display the year in which we first detected drilling, along with the measured area of the site or impoundment (in square meters). Users can toggle different years of interest on and off using the left panel of the map. At the bottom of that same panel, uses can access the total number of drilling sites and impoundments identified during each year. Lastly, users can download SkyTruth’s entire FrackFinder dataset using the export button.

Image 2. Our Earth Engine app lets users track oil and gas development through time in WV.

We hope that the updates to our West Virginia FrackFinder datasets, and the new Earth Engine app that hosts them, will inform researchers, landowners, policymakers, and others, and help them bring about positive change. Feel free to take a look and send us feedback; we love to hear from people using our data.

SkyTruth 2020: What to Expect in the New Year

Oil pollution at sea, mountaintop mining, Conservation Vision and more on SkyTruth’s agenda.

SkyTruth followers know that we generated a lot of momentum in 2019, laying the groundwork for major impact in 2020. Here’s a quick list of some of our most important projects underway for the new year.

Stopping oil pollution at sea: SkyTruth has tracked oil pollution at sea for years, alerting the world to the true size of the BP oil spill, tracking the ongoing leak at the Taylor Energy site until the Coast Guard agreed to take action, and flagging bilge dumping in the oceans. Bilge dumping occurs when cargo vessels and tankers illegally dump oily wastewater stored in the bottom of ships into the ocean. International law specifies how this bilge water should be treated to protect ocean ecosystems. But SkyTruth has discovered that many ships bypass costly pollution prevention equipment by simply flushing the bilge water directly into the sea.

In 2019 SkyTruth pioneered the identification of bilge dumping and the vessels responsible for this pollution by correlating satellite imagery of oily slicks with Automatic Identification System (AIS) broadcasts from ships. For the first time, we can ID the perps of this devastating and illegal practice.

PERKASA AIS track

Figure 1. SkyTruth identified the vessel PERKASA dumping bilge water via AIS broadcast track overlain on Sentinel-1 image. 

But the Earth’s oceans are vast, and there’s only so much imagery SkyTruthers can analyze. So we’ve begun automating the detection of bilge dumping using an Artificial Intelligence (AI) technique called machine learning. With AI, SkyTruth can analyze thousands of satellite images of the world’s oceans every day –- a process we call Conservation Vision — finding tiny specks on the oceans trailing distinctive oily slicks, and then naming names, so that the authorities and the public can catch and shame those skirting pollution laws when they think no one is looking.

A heads up to polluters: SkyTruth is looking. 

We got a big boost last month when Amazon Web Services (AWS) invited SkyTruth to be one of four nonprofits featured in its AWS re:Invent Hackathon for Good, and awarded SkyTruth one of seven AWS Imagine Grants. We’ll be using the funds and expertise AWS is providing to expand our reach throughout the globe and ensure polluters have nowhere to hide.

Protecting wildlife from the bad guys: Many scientists believe the Earth currently is facing an extinction crisis, with wildlife and their habitats disappearing at unprecedented rates.   

But SkyTruth’s Conservation Vision program using satellite imagery and machine learning can help. Beginning in 2020, SkyTruth is partnering with Wildlife Conservation Society to train computers to analyze vast quantities of image data to alert rangers and wildlife managers to threats on the ground. These threats include roads being built in protected areas, logging encroaching on important habitats, mining operations growing beyond permit boundaries, and temporary shelters hiding poachers. With better information, protected area managers can direct overstretched field patrols to specific areas and catch violators in the act, rather than arriving months after the fact.  It can alert rangers before they discover a poaching camp by chance (and possibly find themselves surprised and outgunned).

To make this revolution in protected area management possible we will be building a network of technology and data partners, academic researchers, and other tech-savvy conservationists to make the algorithms, computer code, and analytical results publicly available for others to use. By publicly sharing these tools, Conservation Vision will enable others around the world to apply the same cutting-edge technologies to protecting their own areas of concern, launching a new era of wildlife and ecosystem protection. In 2020 we expect to undertake two pilot projects in different locations to develop, refine, and test Conservation Vision and ultimately transform wildlife protection around the world.

Identifying mountaintop mining companies that take the money and run. SkyTruth’s Central Appalachia Surface Mining database has been used by researchers and advocates for years to document the disastrous environmental and health impacts of mountaintop mining. Now, SkyTruth is examining how well these devastated landscapes are recovering.

Figure 2. Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

To do this, we are generating a spectral fingerprint using satellite imagery for each identified mining area. This fingerprint will outline the characteristics of each site, including the amount of bare ground present and information about vegetation regrowth. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest. 

Under federal law, mining companies are required to set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. But the rules are vague and vary by state. If state inspectors determine that mine sites are recovered adequately, then mining companies reclaim their bonds, even if the landscape they leave behind looks nothing like the native forest they destroyed. In some cases, old mines are safety and health hazards as well as useless eyesores, leaving communities and taxpayers to foot the bill for recovery. SkyTruth’s analysis will provide the public, and state inspectors, an objective tool for determining when sites have truly recovered and bonds should be released, or when more should be done to restore local landscapes.

Characterizing toxic algal blooms from space: Harmful algal blooms affect every coastal and Great Lakes state in the United States. Normally, algae are harmless — simple plants that form the base of aquatic food webs. But under the right conditions, algae can grow out of control causing toxic blooms that can kill wildlife and cause illness in people. 

 SkyTruth is partnering with researchers at Kent State University who have developed a sophisticated technique for detecting cyanobacteria and other harmful algae in the western basin of Lake Erie — a known hotspot of harmful algal blooms. They hope to extend this work to Lake Okeechobee in Florida. But their method has limitations: It uses infrequently collected, moderate resolution 4-band multispectral satellite imagery to identify harmful blooms and the factors that facilitate their formation. SkyTruth is working to implement the Kent State approach in the more accessible Google Earth Engine cloud platform, making it much easier to generate updates to the analysis, and offering the possibility of automating the update on a regular basis.  We anticipate that this tool eventually will enable scientists and coastal managers to quickly identify which algal blooms are toxic, and which are not, simply by analyzing their characteristics on imagery.

Revealing the extent of fossil fuel drilling on public lands in the Colorado River Basin: Modern oil and gas drilling and fracking is a threat to public health, biodiversity and the climate. For example, researchers from Johns Hopkins University used our data on oil and gas infrastructure in Pennsylvania to examine the health effects on people living near these sites and found higher premature birth rates for mothers in Pennsylvania that live near fracking sites as well as increased asthma attacks.

The Trump Administration is ramping up drilling on America’s public lands, threatening iconic places such as Chaco Culture National Historical Park in New Mexico. Chaco Canyon is  a UNESCO World Heritage Site that contains the ruins of a 1,200 year-old city that is sacred to native people. According to the Center for Western Priorities, 91% of the public lands in Northwest New Mexico surrounding the Greater Chaco region are developed for oil and gas, and local communities complain of pollution, health impacts and more.

Figure 3. Chaco Canyon Chetro Ketl great kiva plaza. Photo courtesy of the National Park Service.

In 2020 SkyTruth will deploy a machine learning model we developed in 2019 that identifies oil and gas drilling sites in the Rocky Mountain West with 86.3% accuracy. We will apply it to the Greater Chaco Canyon region to detect all oil and gas drilling sites on high-resolution aerial survey photography. We hope to then use these results to refine and expand the model to the wider Colorado River Basin. 

Local activists in northwestern New Mexico have fought additional drilling for the past decade. Last year, New Mexico’s congressional delegation successfully led an effort to place a one-year moratorium on drilling within a 10-mile buffer around the park. Activists view this as a first step towards permanent protection. SkyTruth’s maps will help provide them with visual tools to fight for permanent protection.

A new SkyTruth website: We’ll keep you up to date about these projects and more on a new, revamped SkyTruth website under development for release later this year. Stay tuned for a new look and more great SkyTruthing in the year ahead!

Systematic GPS Manipulation Occuring at Chinese Oil Terminals and Government Installations

Analysis reveals precise location and timing of GPS interference but purpose remains unclear.

Last month, an article in MIT Technology Review described strange GPS anomalies  in Shanghai. I began investigating, and have now found evidence of a novel form of GPS manipulation occuring at at least 20 sites on the Chinese coast during the past year. The majority of these sites are oil terminals, but government installations in Shanghai and Qingdao also show the same striking pattern of interference in GPS positioning. We don’t know the reason for this interference. It may simply be a general security or anti-surveillance system but it is also possible that it is intended to avoid scrutiny of imports of Iranian crude which have recently come under U.S. sanctions. Whatever the intention, we are able to demonstrate here, through analysis of vessel tracking data, that this GPS interference can be pinpointed very precisely in both time and location.

According to the MIT Technology Review article, this phenomenon was first documented by the U.S. flagged container ship Manukai when the vessel entered the port of Shanghai in July. The captain noticed that the vessel’s AIS (Automatic Identification System) appeared to malfunction — vessels on the navigation screen appeared and disappeared without explanation and appeared to move when they were in fact stationary. AIS, originally designed for collision avoidance, transmits vessels’ GPS locations, courses, and speed every few seconds via VHF (very high frequency) radio. These signals are not only picked up by nearby vessels and terrestrial antennas, but some private companies have also launched satellites able to receive these signals. For this analysis we were able to use data made available by two of these companies, Spire and Orbcomm, through our research partnership with Global Fishing Watch.

An investigation by non-profit C4ADS (Center for Advanced Defence Studies) showed that AIS vessel locations from hundreds of ships navigating Shanghai’s Huangpu river were coming up at false locations. Strangely, vessels on the river would have their GPS location jump to a ring of positions appearing on land. And this was not just affecting ships; looking at the cycling and running app STRAVA’s tracking map of cyclists, C4ADS also confirmed that this strange pattern of interference was affecting all GPS receivers.

To further investigate the GPS manipulation documented in Shanghai, I examined AIS position broadcasts from ships in the area. A distinct pattern emerged. Upon approaching the area of interference, a vessel’s broadcast position jumps from the vessel’s true location to a point on land where false AIS broadcasts occur in a ring approximately 200 meters in diameter. Many of the positions within the ring had speeds of precisely 31 knots or 21 knots (much faster than vessels would be moving near dock) and showed a course varying depending on the position within the ring. The GPS anomaly appears to affect vessels once they are a few kilometers out from the center of the ring. Once affected, vessels begin broadcasting seemingly random positions within the ring or from other high speed positions scattered around it.

Image 1. The Chinese cargo ship Huai Hia Ji 1 Hao (yellow) transits southeast on the Huangpu river. Upon nearing the center of GPS interference area the track jumps to the ring on land and to other random positions nearby. Positions from other affected vessels are shown in red. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 2. GPS interference can be pinpointed based on this ring of false AIS positions. Approximately 200 meters in diameter, many of the positions in the ring had reported speeds near 31 knots (much faster than a normal vessel speed) and a course going counterclockwise around the circle. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Because the ring of false AIS broadcasts follows this very specific pattern, I was able to query AIS tracking data to check if there are other locations where these rings are also occurring. The results are striking. This GPS manipulation is occuring not only in Shanghai but has occurred in at least 20 locations in six Chinese cities within the past year. The focus of these apparent GPS manipulation devices is clearly oil terminals (where 16 of the 20 detected locations were observed). But three prominent office buildings in Shanghai and Qingdao are also affected: the Industrial and Commercial Bank of China in Shanghai, the Qingdao tax administration office, and the Qingdao headquarters of the Qingjian industrial group.

Image 3. A ring of false AIS positions marks an apparent GPS interference device deployed in an office building identified as the Qingdao tax administration office. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 4. Locations of detected GPS manipulation occuring in six Chinese cities in 2019. Interference following this pattern was not found beyond the Chinese coast.

It seems likely that the centers of these rings of false AIS positions actually mark the physical location of some sort of GPS disrupting device. A device having precisely this effect on GPS receivers, including shipborne AIS systems, has not been previously documented, though there have been other cases of GPS blocking and manipulation. Earlier this year C4ADS published a report with details on GPS manipulation clearly being carried out by the Russian government. These Russian systems appeared to have the effect of making all receiving devices within range show some particular location, such as a nearby airport, rather than the true location of the device. This was seen in one striking example of vessels approaching Putin’s alleged palace on the Black Sea coast.

This Chinese system is clearly being deployed both at central government offices and at the much more remote locations of oil terminals. In the case of the government office buildings it seems likely that these GPS disrupting devices were activated as a security measure. Some are only active for a few days, perhaps to coincide with the visit of an important official. However,  the AIS manipulation occuring at oil terminals particularly interests us at SkyTruth: One possible motive for deploying GPS manipulation devices at oil terminals could be recent U.S. sanctions on Chinese companies importing Iranian crude. And the intentional disruption of a navigation safety system, in close proximity to crude oil storage, is a serious concern.

Almost half of the specific locations where these presumed GPS disrupting devices have been deployed are at oil terminals near Dalian in northeast China. In an August analysis, The New York Times matched Planet satellite imagery from June and July with AIS tracking data to show Iranian tankers delivering oil to China in violation of U.S. sanctions. The Financial Times also documented Chinese flagged tankers importing Iranian crude after ship to ship transfers with Iranian tankers.

I took a closer look at exactly how this GPS disruption is affecting vessel tracking in one oil terminal east of Dalian. Here I identified four locations where GPS disrupting devices appear to have been deployed in 2019. I compared AIS vessel position data from March 1, 2019  and September 5, 2019. The differences were dramatic.

These two days showed similar numbers of AIS positions in the area. But on September 5 approximately two-thirds of the vessel positions at dock disappeared and appeared to be replaced by positions orbiting the GPS disrupting devices or scattered randomly in the region. At the same time, it does appear that some normal AIS broadcasts are coming through and that the GPS disruption does not entirely mask all vessel movements in the area.

Image 5. On March 1, 2019 AIS vessel position data around an oil terminal east of Dalian China shows accurate vessel positions and speeds. On that date, none of the four locations of GPS interference were active. Consequently no vessel positions appear on land and stationary vessels are accurately shown with near 0 speeds (green). AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 6. On September 5, 2019 two GPS interference locations were active and this had a dramatic effect on scrambling vessel positions in the area. Many positions now appear orbiting the presumed GPS interference devices and others appear scattered on land. On the water many positions are appearing with very high speeds (over 25 knots, red) and it’s not possible to distinguish true and false locations. However some slow speed positions (green) are appearing at dock where they would be expected, so some AIS broadcasts appear to be unaffected. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 7. The distribution of AIS speeds in the area is significantly altered by the activation of the GPS interference devices. Above AIS speed distributions are compared between March 1 (left, no GPS interference) and September 5 (right, active GPS interference). On Sept 5 the total number of slow speed positions from docked vessels is greatly reduced and spikes now appear at 21 and 31 knots from positions orbiting the presumed GPS interference devices.

I also examined one individual vessel track to see how it was affected by GPS interference. This is the Chinese flagged tanker Jin Nui Zou which entered the Dalian oil terminal on September 5. Initially a normal track is seen as the vessel approaches the terminal from the southeast. With closer proximity to the presumed interference device, scrambled positions — often with very high speeds — start to appear. Eventually almost all of the vessel’s AIS positions appear in the ring orbiting the interference device.

Image 8. The tanker Jin Niu Zuo approaches an oil terminal east of Dalian on September 5. Initially, positions with normal transit speeds appear (yellow). With closer proximity, scattered high speed positions begin to emerge (red) and eventually most positions appear in the ring surrounding the presumed AIS interference device. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

The timing of GPS interference at different sites on the Chinese coast can be inferred based on the appearance of AIS positions on land with 21 and 31 knot speeds. Of the 20 locations identified, interference appears earliest at office buildings in Qingdao but only over a couple days (April 17 – 18, 2019). The first GPS interference at oil terminals appears in June and has continued until recently but timing varies by location. Activation of interference at different terminals is intermittent and may be in response to specific events. For instance at an oil terminal near Quanzhou GPS interference appears to have been activated only between September 25th and 27th, 2019.

At the Dalian oil terminals GPS interference appears to have begun in late June 2019. It is possible that this was a reaction to increased scrutiny of crude imports after the U.S. ended exemptions for purchase of Iranian oil on May 2nd. In fact, Dalian is the headquarters of two subsidiaries of Cosco shipping which were sanctioned on September 25 for importing Iranian crude. Based on what can be seen with vessel activity in Dalian, it is clear that GPS interference is not able to entirely mask vessels approaching the terminal. However, it likely would make it impossible to reliably link a vessel’s AIS track with satellite imagery of a vessel discharging crude at dock. While it is not at all clear that GPS interference was intended to obscure shipping activity, we do see that it had a significant impact on AIS tracking and that the interference was specifically concentrated at oil terminals.

In the November article first documenting the strange GPS anomaly in Shanghai, the question was posed whether this was the work of the Chinese state or some other actor like a mafia engaged in smuggling river sand. Based on the very specific characteristics of the GPS manipulation observed and its deployment at high level installations, it seems very likely that the Chinese state is responsible. It remains to be seen whether this is simply a security measure or if GPS manipulation is also being deployed specifically to prevent monitoring of oil imports.

Fracking in Suburbia

What do you do when big oil moves in next door?

Karen Speed’s new house in Windsor, Colorado was supposed to be a peaceful retirement home. Now she plans to move.

Patricia Nelson wanted her son Diego to grow up the way she did – far from the petrochemical plants surrounding their home in Louisiana. So she moved back to Greeley, Colorado to be close to her family. Then she learned about the drilling behind Diego’s school.

Shirley Smithson had enjoyed her quiet community for years, riding her horse through her neighbor’s pastures, watching the wildlife, and teaching at local schools. When she learned that oil wells would be popping up down the street, she was in denial at first, she says. Then she took action. 

These women shared their stories with a group of journalists and others attending the Society of Environmental Journalists (SEJ) 2019 meeting in Fort Collins, Colorado last month. Fort Collins sits right next to Weld County – the most prolific county in Colorado for oil and gas production and among the most prolific in the entire United States. There, hydraulic fracturing (mostly for oil) has boomed, along with a population surge that is gobbling up farmland and converting open space into subdivisions. Often, these two very different types of development occur side-by-side. 

“We moved [into our house] in September, 2014,” Karen Speed told me, “and by the third week of January 2015, boy, I regretted building that house.” That was the week she learned that Great Western Oil and Gas Company, LLC, was proposing to put a well pad between two neighborhoods; and one of those neighborhoods was hers. When residents complained, she said, the company moved the site across a road and into a valley. “Which really isn’t the right answer,” Speed said. “Not in my backyard attitude? No – not in my town.” The well pad now sits next to the Poudre River and a bike path according to Speed. “People I know no longer ride there. They get sick,” she said. “One guy I know gets nosebleeds. He had asthma already and gets asthma attacks after riding.“

Well pads in neighborhoods are not uncommon throughout parts of Colorado’s Front Range. Weld County alone has an estimated 21,800 well pads and produces roughly 88% of Colorado’s oil. SkyTruth’s Flaring Map reveals a high concentration of flaring sites occurring in that region. This industrial activity occurs within residential areas and farmland despite the fact that people living near fracking sites in Colorado complain of bloody noses, migraines, sore throats, difficulty breathing, and other health problems according to Nathalie Eddy, a Field Advocate with the nonprofit environmental group Earthworks.   

Image 1. ImageMethane flaring locations from oil and gas wells in Weld County, CO. Image from SkyTruth’s Annual Flaring Volume Estimates from Earth Observation Group.

 

And then there was the explosion. Two years after Speed moved into her new home, on December 22, 2017, her house shook when a tank exploded at Extraction Energy’s Stromberger well pad four miles away. “When it exploded it really rocked the town,” she said. More than a dozen fire departments responded to the 30-foot high flames. “It went from 8:45 in the evening until the following morning before they could recover and get out of that space,” Speed recalls. According to a High Country News story, workers raced around shutting down operations throughout the site — 19 wells in all plus pipelines, tanks, trucks and other industrial infrastructure  — to prevent oil, gas, and other chemicals from triggering more explosions. Roughly 350 houses sat within one mile of the site and many more were within shaking range. One worker was injured. Dispatcher recordings released by High Country News reveal how dangerous the situation was, and how local fire departments were unprepared for an industrial fire of that magnitude.

That explosion occurred the very night Patricia Nelson returned home from a long day at the District Court in Denver. Nelson has been part of a coalition of public interest groups – including the NAACP, the Sierra Club, Wall of Women, and Weld Air and Water – that sued the Colorado agency responsible for overseeing oil and gas production in the state, the Colorado Oil and Gas Conservation Commission, for approving permits for 24 wells behind her son Diego’s school.  The company that would drill those wells was the same company overseeing the site that exploded – Extraction Energy.

Under Colorado law, oil and gas wells can be as close as 500 feet from a home and 1,000 feet from a school. Extraction’s new wells would be just over that limit and less than 1,000 feet from the school’s playing fields. Although the court hadn’t yet ruled, the company began construction on the site a few months later, in February 2018, and began drilling the wells that May. Ultimately, the District Court and the Appeals Court upheld the permits. Oil wells now tower over the Bella Romero Academy’s playing fields and the surrounding neighborhood of modest homes.

Smithson once taught at Bella Romero and worries about the kids. “When you have noise pollution and light pollution and dust and methane and all the things that come with having oil and gas production going on, kids are impacted physically. Their lungs aren’t developed…their immune systems aren’t totally developed and they are picking all this up,” she said. She has tried to mobilize the community but has been frustrated by the intimidation many parents feel. “This is a community without a voice,” she said. Bella Romero Academy is roughly 87% students of color, most of whom qualify for free or reduced lunch. “There are kids from Somalia, from war camps” attending the school, Smithson said. “They have trauma from the top of their head to their toes. They’re not going to speak up.” Both Smithson and Nelson pointed out that immigrants – whether from Somalia or Latin America – are unlikely to speak out because they fear retaliation from Immigration and Customs Enforcement. Moreover, some parents work for energy companies. They fear losing their jobs if they oppose an oil site near the school.

 In fact, according to Smithson, Nelson, and Speed, Extraction Energy came to Bella Romero because it expected few parents would resist: The company originally proposed these wells adjacent to the wealthier Frontier Academy on the other side of town, where the student body is 77% white. Extraction moved the wells to Bella Romero after an outcry from the school community. This kind of environmental injustice isn’t unusual, and it generated attention from major media outlets, including the New York Times and Mother Jones. You can see how close the wells are to the school in this clip from The Daily Show (and on the SkyTruth image below).

Image 2: Extraction Energy’s facking site near Bella Romero Academy in Greeley, CO. Image by SkyTruth.

 

SkyTruth has resources to help residents, activists, and researchers address potential threats from residential fracking. SkyTruth’s Flaring Map covers the entire world, and users can see flaring hotspots in their region – where energy companies burn off excess methane from drilling operations into the air — and document trends in the volume of methane burned over time. The SkyTruth Alerts system can keep people in Colorado, New Mexico, Wyoming, Montana, Utah, Pennsylvania, West Virginia up-to-date on new oil and gas permits, and new activities in their area of interest.  

 We know that residents and researchers using these kinds of tracking tools can have major impact. Johns Hopkins University researchers used SkyTruth’s FrackTracker program, which identified the location of fracking sites in Pennsylvania, to document health impacts in nearby communities. Those impacts included increases in premature births and asthma attacks. Maryland Governor Larry Hogan cited this information in his decision to ban fracking in his state. Those interested in collaborating with SkyTruth on similar projects should contact us.

Photo 1. Pump jacks at Extraction Energy’s Rubyanna site in Greeley, CO. Photo by Amy Mathews.

 

Although Colorado activists have had limited success so far, this past year did bring some positive changes. The Colorado General Assembly passed SB 181, which directs the Colorado Oil and Gas Conservation Commission to prioritize public health, safety, welfare, and the environment over oil and gas development. The new law also allows local governments to regulate the siting of oil and gas facilities in their communities and set stricter standards for oil and gas development than the state. Colorado agencies are still developing regulations to implement these new provisions.

 Improvements in technology could help as well.  The same day the SEJ crew met with concerned residents, a spokeswoman with SRC Energy explained the state of the art operations at their Golden Eagle pad in Eaton, Colorado. That technology is designed to mitigate impacts on the surrounding community and includes a 40-foot high sound wall, a water tank on site to pump water from a nearby farm (which reduces truck traffic), and electric pumps (to reduce emissions), among other features. Still, the fear of being surrounded by industrial sites remains for many residents.

Photo 2. SRC Energy’s Golden Eagle Pad, Eaton, CO. Photo by Amy Mathews.

 

In the meantime, Karen Speed is starting to look elsewhere for a new home. Shirley Smithson has decided she’s not going to let an oil company ruin her life. And Patricia Nelson will continue to fight for her family.

 “I think about moving all the time,” Nelson told the group of journalists, her voice cracking.  “But my whole family lives here and I don’t feel I can leave them behind… My sister has five children and drives to Denver for work every day…. I have cousins with kids at this school and family friends. Really, moving isn’t an option for me.”