Protecting Biodiversity and Indigenous Lands from Space

Illegal mining is devastating parts of the Amazon rainforest. SkyTruth is figuring out how to detect new mining threats and alert conservationists on the ground.

The Amazon rainforest is one of the most biologically diverse places on Earth; a breathtaking riot of life that evolved over eons, encompassing the Amazon River and its vast system of tributaries. Those rivers hold more species of fish than any other river system in the world.  The surrounding forests are home to 25% of the world’s terrestrial species. Many are found only in the Amazon region, and some are endangered, while others undoubtedly remain unknown. Besides their intrinsic value as unique species, rainforest flora and fauna represent a barely tapped reservoir of genes, chemicals, and more that could benefit humankind.  Already, more than 25% of medicines used today trace their roots back to Amazonian species, including quinine and many cancer drugs. How many more remain hidden?

And then there’s the forest’s role in regulating climate: those 1.4 billion acres of trees covering 40% of South America hold a tremendous amount of carbon. If released, that carbon will accelerate climate change and the disruptions we already are seeing on Earth, including rising temperatures, melting glaciers, stronger storms, longer droughts, and more frequent flooding.

Photo: Jaguar by Nickbar from Pixabay.

Tragically, this carbon is in fact being released. For decades, there has been widespread concern about deforestation in the Amazon as logging, mining, agriculture, and human infrastructure penetrate forest boundaries and slash holes in otherwise intact habitat. Today, ever more remote regions are affected, including lands held by indigenous people who depend on the plants and animals of the forest to survive.  As forest life disappears, so too will ancient cultures that have lived sustainably in the forest for centuries, victims of a global economy and expanding population that demands ever more resources.

Before this year, SkyTruth’s work hadn’t focused on the world’s rainforests. Yet the fact that they are remote, dense, and threatened makes them perfect targets for exploring environmental damage from space, and our new partnership with Wildlife Conservation Society (WCS) has pushed SkyTruth to expand its reach in applying its tools to new parts of the world, including the Amazon.

One growing problem in particular has caught our attention: small-scale, artisanal mining for gold in Peru and Brazil along tributaries of the Amazon such as the Inambari River. These aren’t the huge gold mines of the Northern Hemisphere, but rather individual miners or groups of miners who work along the edges of rivers, dredging their banks and beds with toxic mercury to separate out small flecks of gold. In the process, miners cut down trees and destroy riverside habitat with their dredges, pits, and sluices. Their mercury poisons the water, fish, birds, and people who rely on these rivers. Although it’s called “small-scale,” the actions of an estimated 40,000 miners add up: as of 2018 such mining had destroyed 170,000 acres of virgin forest in southeast Peru alone. It’s illegal there, and in other protected areas throughout the region, yet it often occurs unchecked. Government agencies in the region, and our partners at WCS and other NGOs, have struggled with identifying new mining activity in such remote regions; if they don’t know where mining is occurring, they can’t take action to stop it.

Radar satellite imagery from the European Space Agency’s Sentinel-1 satellite can help. This radar penetrates the rainforest’s frequent cloud cover and reveals activities on the ground underneath. Using this imagery, SkyTruth has begun developing an open mapping platform to identify areas on the ground that have been deforested because of mining, and illustrate trends over time to reveal new mining activity. While radar imagery is able to see through clouds, it lacks the spectral data provided by optical (color-infrared) satellite sensors. To compensate for this, our model includes a processing step that cleans and enhances each image. Then, the images are analyzed using a random forest classifier that we’ve trained to identify land cover types, including mining.

You can see the output of our model in Figure 1 for the Madre de Dios region in southern Peru. Areas in red are classified as likely mines, while areas in yellow correspond to cleared forest, those in green are intact forest, and those in blue are water.  

Figure 1. Recent mining in Madre de Dios, Peru.

So far, we’ve successfully detected recent mining operations in the Madre de Dios region (as well as in the lands of the Munduruku tribe in Brazil, shown in Figure 2) The Munduruku have been struggling for years to demarcate their sovereign lands to protect their indigenous culture and stop continued encroachment from mining.  

Figure 2. Mining activity in Munduruku land along the Cabruá and Das Tropas Rivers in Brazil’s Para state.

This past week, SkyTruth submitted its pitch highlighting this progress as a semi-finalist in the Artisanal Mining Challenge, a competition sponsored by Conservation X Labs to address the adverse impacts of artisanal mining around the world. We made the first cut this spring (from 90 applicants down to 26), and are hopeful that our proposed Project Inambari will be promoted by the judges through this next round of the competition, and we’ll become one of 10 finalists. That would put us in position to be chosen as one of the winners, and to receive significant funding to scale-up this vitally important initiative. We’ll keep you posted.

Alice Foster’s Internship Triggered New Excitement About Her Career Possibilities

Before her internship, Alice felt burnt out at school. After applying new skills and technologies to environmental projects at SkyTruth, she’s looking forward to her remaining classes and a fulfilling career.

As I wrap up my four-month internship at SkyTruth, I would like to share some highlights and takeaways from my experience. During my internship I explored the field of geospatial technology for the first time, which allowed me to learn new skills and gave me insight into my career goals. I learned about global environmental issues that I hadn’t known existed. And I got to work with a kind, dedicated, creative group of people. I contributed to SkyTruth’s mountaintop mining research and Project Inambari, which will create an early alert system for tropical forest mining. I also spent time identifying oil and gas well pads, collecting images of oil slicks, and creating annotated maps in QGIS, a geographic information system application that can be used to analyze and visualize geospatial data such as satellite imagery or a ship’s track across the ocean.

On just my first day of orientation at SkyTruth, the high level of support and guidance I received from the staff surprised me. My advisers Brendan Jarrell and Christian Thomas spent lots of time introducing me to concepts and technologies (like Google Earth Engine and QGIS) that I would use in my work. One of the first skills I learned was recognizing oil slicks on satellite imagery — most likely from vessels dumping oily bilge water at sea — and creating an annotated map to reveal the slicks to the public. Brendan patiently guided me through the steps to making a map twice. The team congratulated me when I found my first slick, even though I did not think it merited attention. This encouragement made me feel welcomed and excited about my work. 

The search for oil slicks allowed me to virtually explore oceans and coastlines across the globe. With time, it revealed to me more than how to use geospatial technology, but how little geography I knew. I would toggle past a country or island and wonder what it was like there, realizing I did not even know its name. And so I started exploring a geography trivia website in my free time to teach myself the countries of the world. I am now learning capital cities in Europe, which I tend to forget.

After getting practice with Google Earth Engine — a tool for analyzing and mapping satellite imagery and change around the world —  during my first couple of weeks at SkyTruth, I became involved in some mining-related projects. In one project, I adapted code from SkyTruth’s mountaintop mining research to incorporate satellite imagery from the European Space Agency’s Sentinel-2 satellite. This imagery provides us additional data, which could improve our ability to detect surface mining throughout Central Appalachia. Working with the code in Earth Engine allowed me to better understand SkyTruth’s process for identifying mines. First, we produce a greenest pixel composite image from a collection of images. Making a composite in Earth Engine means combining multiple overlapping images to create a single image. Images can be combined in different ways; in this case, the greenest pixel composite selects pixels with the highest Normalized Difference Vegetation Index (NDVI) values compared with corresponding pixels in the image collection. NDVI is an indicator of plant health in a given area. To provide a more concrete example, suppose we want to make a greenest pixel composite from three images, all showing a part of West Virginia at different times of summer. Say we look at one pixel in one of the images, which covers a small square of forest. We then compare this pixel with the pixels covering the same bit of forest in the other two images, and we choose the greenest of the three (or, the pixel with the highest NDVI value). If we repeat this process for every pixel in the image, we get one image with all the greenest pixels selected from the collection. 

A second script uses the greenest pixel composite to approximate the lowest NDVI value for each county, producing a threshold image. Again, say we have the greenest pixel composite of West Virginia that we just made. Now we look at forested areas within one county and find the pixels that are least green, or have the lowest NDVI values, and then take the average of these NDVI values. This is the threshold for that county; if a pixel is less green than the threshold, it is likely a mine. Our output image contains these values for every county. As a final step, we compare the greenest pixels with the NDVI thresholds to determine likely mine areas. 

Figure 1. Mining data overlying a Sentinel-2 greenest composite image. The image covers counties in West Virginia, Virginia, and Kentucky.

SkyTruth’s surface mining expert, Christian Thomas, also had me experiment with two different techniques for masking clouds in Sentinel-2 imagery. Clouds obstruct necessary data in images, so clearing them out improves analyses. The standard approach uses a built-in “cloud mask” band. The other approach is an adapted “FMasking” method. This takes advantage of the  arrangement of sensors on Sentinel-2 satellites, which creates a displacement effect in the imagery that is more pronounced for objects at altitude. The FMask uses this effect to distinguish low altitude clouds from human-made infrastructure on land. Though the two methods had similar results, the FMask seemed slightly more accurate.

Working on technical projects like this, I learned how much I enjoy using imagery and geospatial data. I had found analyzing data interesting in the past, but something about being able to visualize the information on a map was even more appealing. I loved how a satellite image could be reduced to numbers and assessed quantitatively, or understood visually, almost as a piece of art. 

In another project, I had the opportunity to develop my writing skills by contributing to an  application for the Artisanal Mining Grand Challenge, a global competition to provide solutions for small-scale, low-tech, and/or informal mining. Researching artisanal gold mining was illuminating, as I knew almost nothing about the subject beforehand. I learned that illegal gold mining in Venezuela and Peru has often involved brutal violence and exploitation. In recent decades, labor and sex trafficking have plagued remote mining regions like Madre de Dios. Small-scale mining practices are also particularly damaging to the biodiverse Amazon ecosystem. To extract a small amount of gold, miners must dig up massive amounts of sediment, denuding the landscape in the process. The use of mercury in artisanal gold mining is incredibly detrimental to water quality and human health.

I was also able to be involved in the technical side of this project, building a tool to detect mines in the Peruvian Amazon. I created a mask that removes water from satellite images so that water areas could not be mistaken for mine areas or vice versa. Mines are often near water or can look like water in imagery. To make the mask, I used the European Commission’s Joint Research Centre global surface water dataset. This dataset contains information about where and when surface water occurred around the world over the past thirty years. In Google Earth Engine, the data is stored in an image with bands representing different measures of surface water. I used the “occurrence,” “seasonality,” and “recurrence” bands to create the mask. “Occurrence” refers to how often water was present at a location; “seasonality” means the number of months during which water was present; and “recurrence” is the frequency with which water returned from one year to the next. I tried to find a combination of band values that would do the best job getting rid of water without masking mines or forest. For example, using an occurrence value of twenty, (that is, masking pixels where water was present twenty percent or more of the time), ended up masking mine areas as well. Christian also suggested using a buffer, which meant that pixels adjacent to a masked pixel also got masked. Since the mask often did not capture all of the pixels in a body of water, the buffer filled in the gaps. Masked pixels dotting a river became a continuous thread. The buffer also helped eliminate river banks, which look similar to mines. We applied the finished water mask to the area of interest in Madre de Dios, Peru.

Figure 2: Water mask in the Madre de Dios region of Peru. White pixels have value 1, while black pixels (water) have value 0. When the mask is applied to a satellite image, all pixels in the black areas appear transparent and are not included in analyses. When identifying potential mines in the image, the masked areas are ignored.

Researching issues related to artisanal gold mining left me unsure of how countermeasures can fully promote the welfare of mine workers and others involved in the long term. The problem of illegal gold mining seems entrenched in broader economic and social issues and therefore cannot be addressed simply by identifying and eradicating mines. Nevertheless, understanding the great damage that this type of mining can do to humans and their environment made clear to me the importance of the project. 

Not only did working at SkyTruth teach me a variety of technical and professional skills, it also helped reveal to me what I want to learn about and pursue in the future. In school last fall, I felt burnt out to the point that I just wanted to get through my remaining semesters and be done. Now I feel the excitement about academics I had as a freshman, motivated and informed by my experience at SkyTruth. With my interest in geology and climate issues renewed, I feel like there is barely enough time left to take all the classes I want to. I hope to improve on skills like writing and computer programming so that I can contribute my best work in the future. Being part of an amazing team has motivated me in that way. I also know that I would like to use the geospatial technologies and approaches I learned at SkyTruth moving forward. I feel excited about future career possibilities; before my internship, I felt confused.

I want to give a huge thank you to Bruce and Carolyn Thomas for hosting me in Shepherdstown. I want to thank Christian for introducing me to SkyTruth and for including me in his Dungeons and Dragons game! And I want to thank everyone on the SkyTruth team for their guidance and for being wonderful.

Figure 3: Team Hike, Harpers Ferry, West Virginia. Photo by Amy Emert.

SkyTruth Board Member Mary Anne Hitt: Activist Extraordinaire

Mary Anne Hitt has led Sierra Club’s Beyond Coal Campaign to extraordinary national success. But she honed her skills in Appalachia, with a little help from SkyTruth.

You might say Mary Anne Hitt has Appalachian activism in her blood. When she was growing up in Gatlinburg, Tennessee (where she attended Dolly Parton’s former high school), her father was Chief Scientist at Great Smoky Mountains National Park. Back then, acid rain was decimating high elevation forests in the East, fueled by pollution from coal-fired power plants. Her father watched as iconic places in the park turned into forests of skeleton trees. He knew the science pointed to nearby power plants run by the Tennessee Valley Authority, and wanted to stop the pollution. But his warnings triggered some resistance from those who didn’t want to rock the boat. “So right from the start,” says Mary Anne, she was “immersed in the beauty and the threats” of protecting Appalachian forests. And she knew the costs of speaking out.

Those costs have never stopped her. Mary Anne graduated from the University of Tennessee, creating her own environmental studies major and forming a student environmental group that continues today. Later, she obtained a graduate degree in advocacy at the University of Montana. Now, she leads the Sierra Club’s Beyond Coal Campaign; a national effort to retire all coal plants in the United States, moving towards 100% renewable energy by 2030, while supporting economic opportunities in communities affected by plant closures.

And she serves on SkyTruth’s board of directors. Her entre to SkyTruth is also steeped in Appalachian advocacy. In the early aughts, Mary Anne was Executive Director of Appalachian Voices, a nonprofit conservation group dedicated to fighting mountaintop mining, fracked-gas pipelines and other harmful activities in Appalachia, while advancing energy and economic alternatives that allow Appalachian communities to thrive. Appalachian Voices is one of SkyTruth’s conservation partners; a relationship that began under Mary Anne’s leadership.

As Mary Anne tells it, Appalachian Voices was fighting mountaintop mining and construction of a new coal plant in southwest Virginia. While fighting the plant, they discovered that 200 new power plants were planned across the country. In other words, a whole new generation of power plants was on the books to replace aging plants. A coalition of grassroots groups and local citizens, organized with help from the Sierra Club, worked to stop them, fighting permits at every stage, slowing the process down and making financial backers nervous.

Figure 1. Mary Anne Hitt

Appalachian Voices contacted SkyTruth to help them convey the vast extent of mountaintop mining in Appalachia as part of their work. In response, SkyTruth developed the first scientifically credible database on the extent of mountaintop mining in the region. (You can read more about this collaboration and what we found here.) SkyTruth continues to update this database every year, providing scientists and others valuable information that supports research on the ecological and human health effects of mountaintop mining.

SkyTruth’s database helped support the broader advocacy work Appalachian Voices was spearheading to fight coal mining and power plants in the region. Collectively, environmental, legal, and grassroots groups nationwide stopped almost all of the proposed power plants, according to Mary Anne. (Ironically, the one in southwest Virginia actually did get built.) “If these plants had been built it would have been doom for our climate,” Mary Anne says now. “There would have been no room for renewables…Grassroots people working in their communities made it happen. That’s what makes me most proud.”

Mary Anne took her successful experience fighting power plants in Appalachia and brought it to the Sierra Club as Deputy Director of the Beyond Coal Campaign in 2008, later becoming Director. The Sierra Club has built on those early lessons and applied them to shutting down all coal plants in the United States. Today, 312 of 530 plants that existed in 2010 have retired or announced their retirement. And according to Mary Anne, the United States reached a promising benchmark a year ago: last April marked the first time we obtained more energy from renewables than from coal. In fact, in 2019 the US consumed more power from renewable energy than from coal for the first time in 130 years. “Most of our arguments now are economic,” says Mary Anne. “The power from a coal plant is more expensive than renewable energy, so people don’t want it. People will keep demanding renewables.”

In April of this year, Mary Anne took on an even bigger responsibility at Sierra Club – the National Director of Campaigns, a new position in the organization where she oversees all the organization’s campaign work. It’s a big job, on top of being a mother to her ten-year old daughter. So why did she agree to join the SkyTruth Board? “Ever since my daughter was born,” says Mary Anne, “I had a policy of not being on any boards because I have a demanding job and serving on boards was more time away from her. But I really believe that SkyTruth’s work is foundational for the environmental movement. I think the ability to see for yourself what’s going on, especially in this age of misinformation, where people don’t know what to believe… the ability to show people with their own eyes what’s going on, I think is more important than ever.”

She also knows from her years in advocacy that having access to technical resources and expertise is challenging for nonprofits, especially small ones. “To provide this to groups in a way that’s technically sophisticated, but they can use it, is a real service,” she says. And SkyTruth has had significant impact on key issues, she notes, particularly given its small size. “To the extent that I can help, I want to do that. And I love that they are based in West Virginia and Shepherdstown – it’s a cool part of SkyTruth’s story.”

But a professional life of activism involves a lot of conflict, Mary Anne acknowledges. To balance it out, she and her husband Than Hitt, a stream ecologist, sing and play guitar at local fundraisers and other community events. Than is a 10th generation West Virginian and they live in Shepherdstown, where SkyTruth is based. The local singing is all for fun she says.

“It’s a way to connect with people you wouldn’t otherwise… And having a creative outlet helps keep me whole.” With activism, “you’re living in your head a lot. Music is in your heart. We all need that.”


SkyTruth 2020: What to Expect in the New Year

Oil pollution at sea, mountaintop mining, Conservation Vision and more on SkyTruth’s agenda.

SkyTruth followers know that we generated a lot of momentum in 2019, laying the groundwork for major impact in 2020. Here’s a quick list of some of our most important projects underway for the new year.

Stopping oil pollution at sea: SkyTruth has tracked oil pollution at sea for years, alerting the world to the true size of the BP oil spill, tracking the ongoing leak at the Taylor Energy site until the Coast Guard agreed to take action, and flagging bilge dumping in the oceans. Bilge dumping occurs when cargo vessels and tankers illegally dump oily wastewater stored in the bottom of ships into the ocean. International law specifies how this bilge water should be treated to protect ocean ecosystems. But SkyTruth has discovered that many ships bypass costly pollution prevention equipment by simply flushing the bilge water directly into the sea.

In 2019 SkyTruth pioneered the identification of bilge dumping and the vessels responsible for this pollution by correlating satellite imagery of oily slicks with Automatic Identification System (AIS) broadcasts from ships. For the first time, we can ID the perps of this devastating and illegal practice.


Figure 1. SkyTruth identified the vessel PERKASA dumping bilge water via AIS broadcast track overlain on Sentinel-1 image. 

But the Earth’s oceans are vast, and there’s only so much imagery SkyTruthers can analyze. So we’ve begun automating the detection of bilge dumping using an Artificial Intelligence (AI) technique called machine learning. With AI, SkyTruth can analyze thousands of satellite images of the world’s oceans every day –- a process we call Conservation Vision — finding tiny specks on the oceans trailing distinctive oily slicks, and then naming names, so that the authorities and the public can catch and shame those skirting pollution laws when they think no one is looking.

A heads up to polluters: SkyTruth is looking. 

We got a big boost last month when Amazon Web Services (AWS) invited SkyTruth to be one of four nonprofits featured in its AWS re:Invent Hackathon for Good, and awarded SkyTruth one of seven AWS Imagine Grants. We’ll be using the funds and expertise AWS is providing to expand our reach throughout the globe and ensure polluters have nowhere to hide.

Protecting wildlife from the bad guys: Many scientists believe the Earth currently is facing an extinction crisis, with wildlife and their habitats disappearing at unprecedented rates.   

But SkyTruth’s Conservation Vision program using satellite imagery and machine learning can help. Beginning in 2020, SkyTruth is partnering with Wildlife Conservation Society to train computers to analyze vast quantities of image data to alert rangers and wildlife managers to threats on the ground. These threats include roads being built in protected areas, logging encroaching on important habitats, mining operations growing beyond permit boundaries, and temporary shelters hiding poachers. With better information, protected area managers can direct overstretched field patrols to specific areas and catch violators in the act, rather than arriving months after the fact.  It can alert rangers before they discover a poaching camp by chance (and possibly find themselves surprised and outgunned).

To make this revolution in protected area management possible we will be building a network of technology and data partners, academic researchers, and other tech-savvy conservationists to make the algorithms, computer code, and analytical results publicly available for others to use. By publicly sharing these tools, Conservation Vision will enable others around the world to apply the same cutting-edge technologies to protecting their own areas of concern, launching a new era of wildlife and ecosystem protection. In 2020 we expect to undertake two pilot projects in different locations to develop, refine, and test Conservation Vision and ultimately transform wildlife protection around the world.

Identifying mountaintop mining companies that take the money and run. SkyTruth’s Central Appalachia Surface Mining database has been used by researchers and advocates for years to document the disastrous environmental and health impacts of mountaintop mining. Now, SkyTruth is examining how well these devastated landscapes are recovering.

Figure 2. Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

To do this, we are generating a spectral fingerprint using satellite imagery for each identified mining area. This fingerprint will outline the characteristics of each site, including the amount of bare ground present and information about vegetation regrowth. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest. 

Under federal law, mining companies are required to set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. But the rules are vague and vary by state. If state inspectors determine that mine sites are recovered adequately, then mining companies reclaim their bonds, even if the landscape they leave behind looks nothing like the native forest they destroyed. In some cases, old mines are safety and health hazards as well as useless eyesores, leaving communities and taxpayers to foot the bill for recovery. SkyTruth’s analysis will provide the public, and state inspectors, an objective tool for determining when sites have truly recovered and bonds should be released, or when more should be done to restore local landscapes.

Characterizing toxic algal blooms from space: Harmful algal blooms affect every coastal and Great Lakes state in the United States. Normally, algae are harmless — simple plants that form the base of aquatic food webs. But under the right conditions, algae can grow out of control causing toxic blooms that can kill wildlife and cause illness in people. 

 SkyTruth is partnering with researchers at Kent State University who have developed a sophisticated technique for detecting cyanobacteria and other harmful algae in the western basin of Lake Erie — a known hotspot of harmful algal blooms. They hope to extend this work to Lake Okeechobee in Florida. But their method has limitations: It uses infrequently collected, moderate resolution 4-band multispectral satellite imagery to identify harmful blooms and the factors that facilitate their formation. SkyTruth is working to implement the Kent State approach in the more accessible Google Earth Engine cloud platform, making it much easier to generate updates to the analysis, and offering the possibility of automating the update on a regular basis.  We anticipate that this tool eventually will enable scientists and coastal managers to quickly identify which algal blooms are toxic, and which are not, simply by analyzing their characteristics on imagery.

Revealing the extent of fossil fuel drilling on public lands in the Colorado River Basin: Modern oil and gas drilling and fracking is a threat to public health, biodiversity and the climate. For example, researchers from Johns Hopkins University used our data on oil and gas infrastructure in Pennsylvania to examine the health effects on people living near these sites and found higher premature birth rates for mothers in Pennsylvania that live near fracking sites as well as increased asthma attacks.

The Trump Administration is ramping up drilling on America’s public lands, threatening iconic places such as Chaco Culture National Historical Park in New Mexico. Chaco Canyon is  a UNESCO World Heritage Site that contains the ruins of a 1,200 year-old city that is sacred to native people. According to the Center for Western Priorities, 91% of the public lands in Northwest New Mexico surrounding the Greater Chaco region are developed for oil and gas, and local communities complain of pollution, health impacts and more.

Figure 3. Chaco Canyon Chetro Ketl great kiva plaza. Photo courtesy of the National Park Service.

In 2020 SkyTruth will deploy a machine learning model we developed in 2019 that identifies oil and gas drilling sites in the Rocky Mountain West with 86.3% accuracy. We will apply it to the Greater Chaco Canyon region to detect all oil and gas drilling sites on high-resolution aerial survey photography. We hope to then use these results to refine and expand the model to the wider Colorado River Basin. 

Local activists in northwestern New Mexico have fought additional drilling for the past decade. Last year, New Mexico’s congressional delegation successfully led an effort to place a one-year moratorium on drilling within a 10-mile buffer around the park. Activists view this as a first step towards permanent protection. SkyTruth’s maps will help provide them with visual tools to fight for permanent protection.

A new SkyTruth website: We’ll keep you up to date about these projects and more on a new, revamped SkyTruth website under development for release later this year. Stay tuned for a new look and more great SkyTruthing in the year ahead!

New Data Available on the Footprint of Surface Mining in Central Appalachia

The area of Central Appalachia impacted by surface mining has increased — by an amount equal to the size of Liechtenstein — despite a decline in coal production.

SkyTruth is releasing an update for our Central Appalachian Surface Mining data showing the extent of surface mining in Central Appalachia. While new areas continue to be mined, adding to the cumulative impact of mining on Appalachian ecosystems, the amount of land being actively mined has declined slightly.

This data builds on our work published last year in the journal PLOS One, in which we produced the first map to ever show the footprint of surface mining in this region. We designed the data to be updated annually. Today we are releasing the data for 2016, 2017, and 2018.

Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

Coal production from surface mines, as reported to the US Energy Information Administration (EIA), has declined significantly for the Central Appalachian region since its peak in 2008. Likewise, the area of land being actively mined each year has steadily decreased since 2007. But because new land continues to be mined each year, the overall disturbance to Appalachian ecosystems has increased. From 2016 to 2018 the newly mined areas combined equaled 160 square kilometers – an area the size of the nation of Liechtenstein. One of the key findings of our research published in PLOS ONE was that the amount of land required to extract a single metric ton of coal had tripled from approximately 10 square meters in 1985 to nearly 30 square meters in 2015. Our update indicates that this trend still holds true for the 2016-2018 period: Despite the overall decrease in production, in 2016 approximately 40 square meters of land were disturbed per metric ton of coal produced – an all time high. This suggests that it is getting harder and harder for companies to access the remaining coal.

Active mine area (blue) and reported surface coal mine production in Central Appalachia (red) as provided by the US Energy Information Administration (EIA). The amount of coal produced has declined much more dramatically than the area of active mining.

This graph shows the disturbance trend for surface coal mining in Central Appalachia. Disturbance is calculated by dividing the area of actively mined land by the reported coal production for Central Appalachia as provided by the EIA.

Tracking the expansion of these mines is only half the battle. We are also developing landscape metrics to assess the true impact of mining on Appalachian communities and ecosystems. We are working to generate a spectral fingerprint for each identified mining area using satellite imagery. This fingerprint will outline the characteristics of each site; including the amount of bare ground present and information about vegetation regrowing on the site. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest.

Mining activity Southwest of Charleston, WV. Land that was mined prior to 2016 is visible in yellow, and land converted to new mining activity between 2016 and 2018 is displayed in red.

Recovery matters. Under federal law, mine operators are required to post bonds for site reclamation in order “to ensure that the regulatory authority has sufficient funds to reclaim the site in the case the permittee fails to complete the approved reclamation plan.” In other words, mining companies set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. If state inspectors determine that mine sites are recovered adequately, then mining companies recover their bonds.

But the regulations are opaque and poorly defined; most states set their own requirements for bond release and requirements vary depending on the state, the inspector, and local landscapes. And as demand for coal steadily declines, coal companies are facing increasing financial stress, even bankruptcy. This underlines the importance of effective bonding that actually protects the public from haphazardly abandoned mining operations that may be unsafe, or unusable for other purposes.

We are now working to track the recovery of every surface coal mine in Central Appalachia. By comparing these sites to healthy Appalachian forests we will be able to grade recovery. This will allow us to examine how fully these sites have recovered, determine to what degree there is consistency in what qualifies for bond-release, and to what extent the conditions match a true Appalachian forest.