Big Changes Coming to SkyTruth Alerts

For the last year or so we’ve been working to revamp SkyTruth Alerts, an app we built for ourselves in 2011, and then opened up to the public a year later. The Alerts lets you see environmental incidents and notifications on a map as they are reported, and allows subscribers to sign up to receive email notifications about reported environmental incidents in areas they care about (aka “Areas of Interest” or AOIs). Technology has made a few leaps since then, so it was time for an overhaul. We’ve added some new features too. We’re excited about the changes, and we hope you will be too.  

What’s Changed?

In a lot of ways, the new SkyTruth Alerts app works the way it always has: anyone can view the map and see the latest reported alerts for a particular area. These notifications come from federal and state websites that we have “scraped” to obtain the reports. The largest source of data is the nationwide oil and hazardous materials spill reports collected by the National Response Center (i.e., NRC Reports). Anyone can sign up to receive email notifications about incidents in their AOIs.

New and Restored Sources of Alerts

As part of the Alerts revamp, we’ve restored and/or added the following sources of alerts:

  • West Virginia oil & gas drilling permits –  restored
  • Colorado oil & gas drilling permits – new
  • Florida Pollution Reports – new

Account Management

We’ve also added account management so you can update your AOIs or change your email address more easily. Signing up for an account will also let you take advantage of new tools we’ll be rolling out in the coming months (we’ll keep you posted after the launch).

New Look!

This is what SkyTruth Alerts looks like right now:

This is what you’ll see when you first open the revamped SkyTruth Alerts (subject to some possible changes over the next few weeks, as we respond to feedback and suggestions from our alpha testers):

New Features!

Here are a few of the new features we’ve added:

New Ways to Create AOIs

Right now, SkyTruth Alerts lets you create AOIs that are a square or rectangle, but that’s not always the ideal shape. In the new version, we’ve added some tools that give you a little more control: you can draw a polygon, take a “snapshot” your current map view, or select a state or county boundary from a list of pre-defined AOIs):

After you create an AOI, you can edit your AOI (or delete it and start again) before giving it a name and saving it to your My Areas list.

Filter Out the Noise

We’ve added several ways to filter what you see in Alerts, so that you can focus on what’s important to you. SkyTruth Alerts shows you the 100 most-recent incidents in your map view (double what’s shown in the current version), so filtering has the added benefit of showing you more of the types of alerts you want to see. You can filter alerts by:

Date Range

Type of Alert

Base Layers

Select from a couple of different map backdrops (“base layers”) so you can focus on what’s important to you. Below is a screenshot of SkyTruth Alerts using the “Minimal” base layer.

Alerts Within AOI Only

This can be useful if there are a lot of alerts in the surrounding area that are more recent than the alerts within your AOI.  

In the image below, there are only a few alerts are shown in the West Virginia AOI:

However, once alerts are limited to within the AOI, the picture changes:

New Ways to View Alerts Markers

In some places, there are many, many alerts in the same location. This can make it hard to move around the map because you end up clicking or tapping an alert marker when you wanted move around in the map view. It can also be hard to “grab” a particular alert marker from a stack of them.

In the first screenshot, clustering is turned on, making it easier to move around the map. Click on a cluster marker to zoom in on that area and see more alerts.

Once you’ve zeroed in on your area of interest, it can still be hard to see the forest for the trees in some locations. In the next image, clustering is turned off. You can see that there are a lot of alerts in this area, but how many exactly?

The image below shows the same area as the one above. If you click on one of the alert markers, it will “explode,” showing you all of the alerts in that location. Click on any of the exploded markers to view the report.

So when’s the Launch?

We’re getting ready to begin alpha testing in in mid-November. Lots of our current subscribers have volunteered to be testers and will be helping us put the finishing touches on the app. A big thank you to all of you who are helping us with that! Testing will last four weeks, and during that time we’ll be making continuous updates based on feedback we receive. We expect to go live with the new version by the end of the year.

SkyTruth Founder John Amos to Speak in Shepherdstown

Did you see the recent front page article in the Washington Post that featured SkyTruth’s work tracking a 14-year oil spill in the Gulf of Mexico? Why is Shepherdstown’s own SkyTruth featured so often in the international press? Come find out!

Founder John Amos and key staff members Christian Thomas and Ry Covington will talk about our work tracking pollution, mapping flaring and fracking, revealing the true scope of devastation from mountaintop mining and illuminating commercial overfishing. There’ll be a Q&A session followed by some light refreshments. For those of you who know us already, please join us with a friend you think might be interested to learn more about this West Virginia-based nonprofit that has global impacts.

SkyTruth: sharing the view from space to inspire people to protect the environment. If you can see it, you can change it!

Event details:

Tuesday, November 13th, 2018 5:30pm-7pm
Shepherd University
Robert C. Byrd Center for Congressional History and Education
213 N King Street
Shepherdstown, West Virginia 25443

New Milestones for Fisheries Transparency in Indonesia and Peru

Global Fishing Watch and SkyTruth team members at the Our Oceans conference in Bali, Indonesia.

Until recently public tracking of fishing activity has been almost entirely dependent on AIS (Automatic Identification System) data, an open system for vessel tracking and collision avoidance. It’s exciting to see this changing with the success of Global Fishing Watch’s Transparency Program. This program began when Indonesia’s fisheries minister Susi Pudjiastuti took the unprecedented step of sharing the country’s Vessel Monitoring System (VMS) tracking data publicly on Global Fishing Watch. VMS had traditionally been a closed monitoring system accessed only by government authorities. Public VMS made thousands of smaller Indonesian fishing vessels trackable in an region with little AIS coverage and established a new policy of total transparency to reinforce Minister Susi’s overhaul of a fisheries sector previously plagued by illegal fishing and labor abuses.

The Our Oceans conference last week in Bali, Indonesia was a chance to showcase the great work of our Indonesian team, recently including analysis of VIIRS (Visible Infrared Imaging Radiometer Suite) nighttime satellite imagery for detecting possible illegal activity in Indonesian waters and developing a process for validation of fishing effort predicted from VMS tracks along with Indonesian researchers. It’s also exciting to see that Indonesia has started a trend in choosing transparency in fisheries monitoring. Peruvian VMS tracking data now appears on the Global Fishing Watch map dramatically increasing our coverage of fishing in the eastern Pacific.

Wildan Ghiffary and Imam Prakoso of the SkyTruth Global Fishing Watch team at the Our Oceans Conference.

Here in Lima it has been great to see the Peru program take shape beginning with the commitment last year to publicly share VMS with Global Fishing Watch. Since then we have held workshops and training sessions with Peru’s Marine Research Institute and vessel monitoring authorities. I also recently had a chance to attend Peru’s biannual marine sciences conference (CONCIMAR) where along with Oceana Peru we put on a workshop for Peruvian students and announced the release of Peruvian data on the Global Fishing Watch map.

Peruvian students attending a workshop on Global Fishing Watch organized by Oceana Peru at Peru’s biannual marine sciences conference (CONCIMAR) held at Universidad Nacional José Faustino Sánchez Carrión in Huacho, Peru.

Both here in Peru and in Indonesia we are excited to see the beginning of a new era of transparency in monitoring and managing fishing resources. New tools and data sources developed by Global Fishing Watch and SkyTruth are being made available to local students, researchers, and government regulators. We are particularly pleased to see so much local interest from the countries that have chosen to share their tracking data publicly. And this is just the beginning. Global Fishing Watch has big plans for supporting fisheries transparency in the future as we aim to work with 20 countries in making their fishing fleets publicly trackable in the next five years.

Discussion of the Global Fishing Watch platform with fisheries science students in Peru.

Tracking the Chinese Squid Fleet in the South Pacific – Part 1: Voyage to the Galapagos

When monitoring vessel activity on the vast scale of the world’s oceans at SkyTruth we know we’re almost always dealing with incomplete information. For example, only some vessels transmit their locations at sea via the Automatic Identification System (AIS), while others may only come up in a particular government’s private Vessel Monitoring System (VMS) or we may just see them as blips on a radar screen. So I was excited to hear that I was invited to accompany a vessel actually going out to investigate one of the fleets we have been monitoring with AIS and night imagery. The ship I would board is the M/V Brigitte Bardot, a 35 meter former racing vessel now run by Sea Shepherd, an international non-profit dedicated to taking direct action for marine conservation. In 2016 Sea Shepherd was able to track down some unusual vessel activity that we spotted in the Indian Ocean with spectacular results.  This time we would be tracking a much larger fleet fishing for squid in international waters 700 miles west of the Galapagos.

The Brigitte Bardot passes Sleeping Lion Rock upon arriving at San Cristobal Island in the Galapagos. Video by Jack Hutton/ Sea Shepherd

Squid doesn’t come to mind when you consider the targets of the world’s largest fishing fleets. However, over the past few years the magnitude and global scale of squid fishing fleets have become apparent. Due to powerful fishing lights used to attract squid to the surface these fleets appear on NASA’s night imagery like cities floating hundreds of miles offshore. Recent analysis of vessel movements shows that they are interconnected with hundreds of predominantly Chinese flagged vessels moving between fleets along the Peruvian Exclusive Economic Zone (EEZ) boundary, the South Atlantic, the northwest Pacific, and even the northern Arabian Sea.

We’ve been monitoring the squid fleet fishing at the Peruvian EEZ boundary for some time. We noticed a handful of vessels in the fleet broadcasting false AIS locations. Then in 2017, we were puzzled when the entire fleet suddenly picked up and relocated 3,000 miles to the northwest of the EEZ boundary, to a remote area west of the Galapagos. So as I boarded Sea Shepherd’s Brigitte Bardot, I was really curious to find out the real size of the fleet and why so many vessels appeared concentrated at this remote location.

Vessel detections with VIIRS night imagery (left) and AIS fishing effort (right) for the week of the Brigitte Bardot’s trip to investigate the squid fleet. Use the slider at the center of the image to switch between VIIRS and AIS detected vessel activity in the area. Full screen image here. Global Fishing Watch

On September 12th, we set off from Panama City with some of us suffering from the rough seas as we steamed southwest towards the Galapagos. I was able to meet the very enthusiastic crew on the Brigitte Bardot, including a professional photographer, a drone pilot, and a fantastic vegan cook. We were also fortunate to be accompanied by Eloy Aroni, a Peruvian researcher who was just completing his thesis on tracking the squid fleet with nighttime satellite imagery from NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS). After three days, we crossed into the Southern Hemisphere with the ship’s engineer taking a celebratory swim across the Equator. Later that afternoon, we sighted the desolate coast of San Cristobal Island, and after rounding the sheer rock cliffs of Sleeping Lion Rock, we entered the island’s main port.

Sea Lions on the docks of San Cristobal with the Brigitte Bardot in the distance.
Photo by Simon Ager/ Sea Shepherd

We were held up in San Cristobal for a few days dealing with customs and inspections. This delay gave me a chance a to see bit of the island’s interior and review the latest information I had on the fleet we were tracking. Our data came from three sources, vessel AIS broadcasts, VIIRS night imagery, and interestingly two synthetic aperture radar (SAR) images of the fleet provided by Kongsberg Satellite Services (KSAT) as we were heading out. While SAR imagery is acquired routinely by the European Space Agency’s Sentinel-1 system over land and coastal areas it’s unusual to have imagery over the open ocean. So we were lucky to have access to a few shots of the fleet provided by KSAT from Canada’s Radarsat-2 satellite. This allowed us to make a comparison to our usual tracking sources for the fleet, AIS and VIIRS night imagery.

Synthetic aperture radar covering a portion of the squid fleet provided by Kongsberg Satellite Services (KSAT). Those vessel detections outlined in green were found by KSAT to align closely with AIS broadcasts. Detections outlined in red could not be identified confidently with AIS. The inset on the lower right shows at larger scale the detection of the squid jigger Hsiang Man Ching. The large number of unidentified (red) detections was likely due to limited satellite AIS reception and does not necessarily indicate that the vessels were not broadcasting AIS.

AIS gives vessel locations and (usually) vessel identities. VIIRS gives us an approximate count of the number of vessels with their fishing lights lit up on a particular night. However, with no law requiring AIS use and the fact that VIIRS imagery is relatively low resolution (and still untested against this particular fleet), we suspected that these data sources might be giving us an incomplete picture of the total fleet activity. For these reasons, it was useful to make a comparison with the two SAR images since they should pick up every vessel present in the area, provided they are metal and above a certain size. Ultimately, comparison between the SAR vessel detections and total AIS broadcasts showed that despite a number of SAR vessel detections that could not be identified with AIS (outlined in red in the figure from KSAT above) the total number vessels detected by both systems was approximately the same, indicating high AIS use for the fleet, but also with a few clusters of radar detected vessels not associated with AIS.

After refueling on Baltra, a barren island with a former US military base, and installing a new satellite communications system, we set off on September 19th. In the evening we rounded the north cape of Santa Isabela Island and headed west into a vast stretch of the open Pacific. Ahead of us the nearest land was 3,000 nautical miles away in the Marquesas Islands of Polynesia. We would be venturing across some of the most remote surface of our planet on a voyage that would launch Operation Mamacocha, Sea Shepherd’s newest campaign fittingly named after the Incan sea goddess.

To be continued…

Captain Chris fixes the antenna of the Brigitte Bardot before departing the Galapagos. Photo by Simon Ager/ Sea Shepherd

A look back at 20 years of oil and gas permitting in Wyoming

A shift in priorities of the EPA under the current administration has raised awareness of an increase in oil and gas permitting across the USA. However, the increase began before the current administration. Although the federal government controls most regulations and laws that affect permitting, other factors such as global oil and gas prices, advances in drilling and production technology, and state governments’ willingness to accommodate investors have an effect on permitting and investment by energy companies. It should be pointed out that permitting does not necessarily indicate drilling as companies can request permits but then hold on to the permits until either eventually drilling, requesting a new permit, or selling the permit to another company. This can tie up land for decades and is covered in more detail by The Wilderness Society’s report: “Land Hoarders: How Stockpiling Leases is Costing Taxpayers”.

Wyoming has an economy that is built on coal and oil, but in the 80s and early 90s it was suffering from an oil glut that caused prices to drop. As prices began to recover throughout the 1990s and 2000s and eventually boom (Fig.1), some companies sought to diversify into natural gas (read more in James Hamilton’s paper “Causes and Consequences of the Oil Shock of 2007-08). Many began to drill for gas in the coal fields of Wyoming, and to apply the relatively new technology of hydraulic fracturing (“fracking”) to extract natural gas from previously uneconomic, low-permeability sandstone and shale reservoirs found throughout the Rocky Mountain West.

Oil and gas prices since 1985.

Figure 1. Oil and gas prices since 1985.

The oil and gas boom ended abruptly in 2008 when the effect of the global financial crisis reached the oil and gas markets and prices plummeted.

To better understand the effect these events had on Wyoming, I analyzed permits for new oil and gas wells, issued by the state over the past 20 years. This data is freely available from the Wyoming Oil and Gas Conservation Commision website: http://wogcc.wyo.gov/. First, I should point out that this data has inconsistencies and holes, due to apparent data entry errors like missing or incorrect dates, missing latitude or longitude, typos, etc. Unfortunately, this meant nearly 24% of the total permits had to be left out of my analysis. Some errors still remain, as seen in this map of permit applications received by the state (Fig. 2). Each county is colored differently and there appear to be some permits which either have the wrong county listed or incorrect map coordinates.

Distribution of oil and gas drilling permit applications, color coded by county.

Figure 2. Distribution of oil and gas drilling permit applications, color coded by county.

What immediately stands out is the relatively densely-packed permits in Campbell county, in the north-east of the state. When I looked closer at this county over time, I saw that most of the permit applications were submitted during the beginning of the boom of 1998-2008. This is quickly followed by a sharp drop around 2000, the time hydraulic fracking made drilling in other parts of the state (and country) more profitable. The original method of coal bed methane drilling was considered uneconomical compared to this new fracking method. At that time, I saw a rise in permit applications across other counties (Fig. 3), but far more subdued than the earlier rush, possibly because fracking made deposits across the country viable and so the increase was more widespread across and outside Wyoming. This is just a theory though, these could easily be due to business strategies of companies “capturing” land before their competitors.

Applications for oil and gas drilling permits received over time by county.

Figure 3. Applications for oil and gas drilling permits received over time by county.

The rate of permit applications slows for all counties as the boom ended around 2008 with a short-lived rise leading up to 2016. The boom and bust periods can be seen more clearly when I looked at the overall quantity of permit applications across Wyoming (Fig. 4).

Total number of oil and gas drilling permits applied for in Wyoming.

Figure 4. Total number of oil and gas drilling permits applied for in Wyoming.

The initial rush of the boom was followed by a dip and second climb as fracking technology took off. This is followed by the bust of 2008. There is a slight rise again around 2016, but it drops off by 2017. The effect of this activity is closely reflected in unemployment figures for the state (Fig. 5). Considering that I am looking at permitting however, and not drilling, this correlation should be seen as a reflection of oil and gas companies’ business activities in a holistic sense.

Unemployment rate for Wyoming over the past 20 years.

Figure 5. Unemployment rate for Wyoming over the past 20 years.

Initially, there’s an overall steady decline in unemployment as the boom sweeps up employees but this rockets up once the bust comes along. Interestingly, between 2012 and 2016, there is a steady rise in permit applications which is reflected by the steady drop in unemployment but this is interrupted by a bump in unemployment around 2016. The restoring of the unemployment level after 2016 is not reflected in the drop in permit applications, however. Those appear to drop off.

Although there are booms and busts, the overall number of well permits is constantly increasing (by simple fact of the number of new permits applied for always outweighing the number of permits expiring). The animated image below (Img. 1) shows the growth of oil and gas permit applications as companies move across the state.

Image 1. Permits applied for over the past 20 years.

Image 1. Permits applied for over the past 20 years. (Click to see time-series)

Graphs and maps give us a good idea of the trends but sometimes it is even more helpful to see the physical reality of these numbers.  This is an area in the most heavily permitted county, Campbell (Img. 2).

Image 2. Comparison of an area of Campbell county from July 1999 to July 2018.

As well as the dramatic increase in well pads (i.e., drilling sites), these images show the addition of access roads threading across the landscape.

What this data doesn’t show is the large amount of orphaned wells that were left behind after the price of oil and natural gas dropped in 2008. This has left a legacy of about 3600 abandoned wells (scroll to bottom for total number of orphaned wells currently tracked by Wyoming Oil and Gas Conservation Commision). Often the state, and therefore, the taxpayers, are left to handle this burden because the responsible companies are either unknown, unable to cover the cleanup costs, or have declared bankruptcy and disappeared. Understandably, the state would prefer to see the wells operate once more rather than paying considerable amounts of money to seal them up and restore the land. But these aging, unsecured wells pose a threat to the environment and to public health.  

Many of the coalbed methane wells built at the beginning of the boom were approved with permission to dump untreated “flowback water” on the surface. The companies convinced the state that this  fluid, coming straight from the coal seams targeted by the drilling, would be beneficial for the parched land even though most of the untreated fluid was highly saline. Also, the effect of flooding the land with large volumes of water was extremely unnatural to the existing ecosystem. Many areas that were normally good for grazing became unusable because they were flooded with this salty water. Land that was adapted to little rainfall and snowmelt was suddenly exposed to a constant flow of brine. The companies pushed the idea of plentiful of water for agriculture and wildlife to drink while downplaying the issue of the quality of the water. The state also towed this line while court battles challenging the “beneficial use” permits, led by landowners and conservation groups, were upheld in court. Eventually, they implemented a water-to-gas ratio cap on surface discharges since many of the wells were producing plenty of salty water but little or even no gas at all.

One other trend that I discovered while scrutinizing the permit database was the time it took to process these permits (Fig. 6 & 7). Plotting permit approval times at first appears to show a distribution that follows the general trends that I’ve seen so far, tracking the boom and bust periods. For comparison, I plotted these for both the year of permit application (Fig. 6) and year of approval (Fig. 7).

Figure 6. Permit approval time arranged by year of application.

Figure 6. Permit approval time arranged by year of application.

 

Figure 7. Permit approval time arranged by year of approval.

Figure 7. Permit approval time arranged by year of approval.

The red lines track the annual average wait time and give a clearer picture of the trend. The spread of wait times fluctuate far more than the actual average wait time. Although the average does not appear to fluctuate much, the scale is a little deceptive as the average wait time extends from 15 days in 1998 to 40 days in the year 2000. The average wait time appears to initially rise with the start of each drilling boom but even out fairly quickly. This changes later when the average wait time climbs sharply around 2013. By 2017, the average wait time has increased considerably to 130 days.

These trends offer insight into the recent history of oil and gas permitting activity in Wyoming. It should be noted that although there was a lot of ‘noise’ in the data that I had to correct or discard, the remaining data helps give me a clearer sense of how oil and gas development is driving change on Wyoming’s landscape. My analysis has been based purely on the history of permitting in Wyoming, not actual drilling. For an analysis on drilling, please look at the Fracktracker Alliance’s page on oil and gas activity in Wyoming. I hope you’ve enjoyed this breakdown of permit data for Wyoming. I hope to take a similar look at other states’ drilling permits, so stay tuned!