Multiple Accounts of Oily Pollution Found in the Mediterranean Sea

SkyTruth recently discovered two oil slicks in the Mediterranean Sea — just the most recent examples of an ongoing bilge dumping problem we’ve found in one of the most heavily used marine water bodies in the world.

This year, SkyTruth discovered multiple likely bilge dumps in the Mediterranean Sea; two in just the past month. The Mediterranean Sea covers around 2.5 million square kilometers from Spain to Israel. This area is a very prominent shipping route, but finding so many spills here is surprising considering how closely Europe monitors its waters.

The first slick we identified recently is located in the Ligurian Sea off the northwest coast of Italy; more specifically the Riviera di Ponente. This tourist destination is also called “the coast of the setting sun.” Sentinel-1 satellite imagery captured this 33-kilometer slick on October 20, 2019 at 05:36:16 UTC (Coordinated Universal Time) in waters near the Italian Riviera, approximately 60 kilometers southwest of the coast of Genoa, Italy’s sixth largest city.

The Italian Riviera is a popular tourist destination with abundant culture and history, as well as captivating vistas and water recreation activities. Therefore, spotting this oily slick (shown in Figure 1 below) so close to Italy’s coastline was unsettling.

Figure 1: A vessel (a bright dot within the red circle) suspected of bilge dumping (the long, black streak on this radar satellite image) in the Ligurian Sea.

We suspect the Med Pacific, an oil and chemical tanker, is the vessel responsible for the slick. The figure above (Figure 1) shows the vessel track for the Med Pacific as small red dots along the path of the slick. These small red dots are time and location stamped AIS (Automatic Identification System) broadcasts from the Med Pacific, which define the vessel’s path and align closely with the long, dark slick. This close fit between the time and location of the broadcasts, and the position of the vessel and the slick in the satellite image, strongly supports our identification of the vessel causing the slick. 

This tanker is operating under a flag issued by the nation of Malta. Malta is the southern-most and largest island within the Maltese Archipelago, located south of Italy in the Mediterranean Sea.

Figure 2: A photo of the Med Pacific, courtesy of Vessel Finder.

Bilge dumping is unlawful activity in which a ship releases untreated, oily waste water into the ocean, thereby avoiding proper measures of treatment required for safe discharge. Whether intentional — to save money and time — or accidental, bilge dumping is a serious problem. For a more thorough explanation of this illegal act, it’s damaging impact, and the methods SkyTruth uses to identify the vessels responsible, check out our recent post.  

Pictured below is the second likely bilge dumping incident in the Mediterranean Sea. Figure 3 depicts a recent slick captured on Sentinel-1 imagery on November 7, 2019 at 03:59:49 UTC. This suspected bilge dump is located approximately 83 kilometers north of Egypt and spans 60 kilometers. We were unable to identify the vessel responsible for this pollution, however, it is a textbook example of a bilge dump: It has the linear shape of an oily slick discharged from a moving ship, with a very bright speck revealing the vessel at the narrow end of the slick. In order to avoid getting caught, this vessel might have turned off its AIS or intentionally misreported its location. 

Figure 3: An unidentified vessel suspected of bilge dumping in the Mediterranean Sea off the coast of Egypt.

SkyTruth’s discoveries in the Mediterranean are concerning given that multiple marine programs are in place to protect the Mediterranean Sea from this kind of harm. Currently, the European Union and twenty-one coastal countries and states bordering the Mediterranean are joined together in the Mediterranean Action Plan (MAP), created as part of the United Nations Environment Programme (UNEP) to establish a partnership and commitment to protect their shared marine environment. Eliminating vessel dumping is defined as one of MAP’s main conservation protocols. The Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea (REMPEC) was created from a collaboration between the International Maritime Organization and UNEP, and collaborates with MAP to focus specifically on combating ship pollution and bilge dumping. 

Given this Mediterranean partnership, ocean offenders are clearly not following the established protocols of their countries. In fact, the creator of REMPEC is Malta. As the flag state of Med Pacific, Malta is responsible for ensuring that this vessel operates lawfully. Figure 4 shows the partner countries and states in the Mediterranean Action Plan, as well as two red bounding boxes where the two (Figure 1 and Figure 3) suspected bilge dumps occurred. Note: Malta and Monaco, very small states that are part of MAP, are not shown on the map. 

Figure 4: Partners of the Mediterranean Action Plan. Recent likely bilge dumps shown by red boxes.

These findings in the Mediterranean Sea should not be overlooked. Countries in the Mediterranean region have many ports and popular recreational activities located on their coastlines. These high traffic areas can be negatively impacted by misbehaving vessel operators who could be carrying commodities as innocuous as fruit juice or, conversely, very hazardous cargo, such as oil and chemicals, like the tanker Med Pacific

Bilge dumping is a serious offense. It can harm the health of marine plant and animal species, and damage coastal communities. Despite how heavily the shipping and marine transportation industry is relied on for international commerce, regulations on vessels have progressed more slowly and generally have received less attention than regulations on land polluters. But authorities are starting to pay attention. Come January 1, 2020 the International Maritime Organization is requiring vessels to use a less toxic blend of vessel fuel with lower sulfur concentrations. This will reduce the amount of harmful sulfur oxide pollution going into the air. This new international law will hold vessels around the world to a higher, cleaner standard for fuel.

Taking more steps to protect the waters of the world is important. We hope the addition of more environmental regulations, as well as monitoring existing regulations by SkyTruth and other environmental groups, keeps vessel operators on their best behavior and helps make our oceans clean. 

Fracking in Suburbia

What do you do when big oil moves in next door?

Karen Speed’s new house in Windsor, Colorado was supposed to be a peaceful retirement home. Now she plans to move.

Patricia Nelson wanted her son Diego to grow up the way she did – far from the petrochemical plants surrounding their home in Louisiana. So she moved back to Greeley, Colorado to be close to her family. Then she learned about the drilling behind Diego’s school.

Shirley Smithson had enjoyed her quiet community for years, riding her horse through her neighbor’s pastures, watching the wildlife, and teaching at local schools. When she learned that oil wells would be popping up down the street, she was in denial at first, she says. Then she took action. 

These women shared their stories with a group of journalists and others attending the Society of Environmental Journalists (SEJ) 2019 meeting in Fort Collins, Colorado last month. Fort Collins sits right next to Weld County – the most prolific county in Colorado for oil and gas production and among the most prolific in the entire United States. There, hydraulic fracturing (mostly for oil) has boomed, along with a population surge that is gobbling up farmland and converting open space into subdivisions. Often, these two very different types of development occur side-by-side. 

“We moved [into our house] in September, 2014,” Karen Speed told me, “and by the third week of January 2015, boy, I regretted building that house.” That was the week she learned that Great Western Oil and Gas Company, LLC, was proposing to put a well pad between two neighborhoods; and one of those neighborhoods was hers. When residents complained, she said, the company moved the site across a road and into a valley. “Which really isn’t the right answer,” Speed said. “Not in my backyard attitude? No – not in my town.” The well pad now sits next to the Poudre River and a bike path according to Speed. “People I know no longer ride there. They get sick,” she said. “One guy I know gets nosebleeds. He had asthma already and gets asthma attacks after riding.“

Well pads in neighborhoods are not uncommon throughout parts of Colorado’s Front Range. Weld County alone has an estimated 21,800 well pads and produces roughly 88% of Colorado’s oil. SkyTruth’s Flaring Map reveals a high concentration of flaring sites occurring in that region. This industrial activity occurs within residential areas and farmland despite the fact that people living near fracking sites in Colorado complain of bloody noses, migraines, sore throats, difficulty breathing, and other health problems according to Nathalie Eddy, a Field Advocate with the nonprofit environmental group Earthworks.   

Image 1. ImageMethane flaring locations from oil and gas wells in Weld County, CO. Image from SkyTruth’s Annual Flaring Volume Estimates from Earth Observation Group.

 

And then there was the explosion. Two years after Speed moved into her new home, on December 22, 2017, her house shook when a tank exploded at Extraction Energy’s Stromberger well pad four miles away. “When it exploded it really rocked the town,” she said. More than a dozen fire departments responded to the 30-foot high flames. “It went from 8:45 in the evening until the following morning before they could recover and get out of that space,” Speed recalls. According to a High Country News story, workers raced around shutting down operations throughout the site — 19 wells in all plus pipelines, tanks, trucks and other industrial infrastructure  — to prevent oil, gas, and other chemicals from triggering more explosions. Roughly 350 houses sat within one mile of the site and many more were within shaking range. One worker was injured. Dispatcher recordings released by High Country News reveal how dangerous the situation was, and how local fire departments were unprepared for an industrial fire of that magnitude.

That explosion occurred the very night Patricia Nelson returned home from a long day at the District Court in Denver. Nelson has been part of a coalition of public interest groups – including the NAACP, the Sierra Club, Wall of Women, and Weld Air and Water – that sued the Colorado agency responsible for overseeing oil and gas production in the state, the Colorado Oil and Gas Conservation Commission, for approving permits for 24 wells behind her son Diego’s school.  The company that would drill those wells was the same company overseeing the site that exploded – Extraction Energy.

Under Colorado law, oil and gas wells can be as close as 500 feet from a home and 1,000 feet from a school. Extraction’s new wells would be just over that limit and less than 1,000 feet from the school’s playing fields. Although the court hadn’t yet ruled, the company began construction on the site a few months later, in February 2018, and began drilling the wells that May. Ultimately, the District Court and the Appeals Court upheld the permits. Oil wells now tower over the Bella Romero Academy’s playing fields and the surrounding neighborhood of modest homes.

Smithson once taught at Bella Romero and worries about the kids. “When you have noise pollution and light pollution and dust and methane and all the things that come with having oil and gas production going on, kids are impacted physically. Their lungs aren’t developed…their immune systems aren’t totally developed and they are picking all this up,” she said. She has tried to mobilize the community but has been frustrated by the intimidation many parents feel. “This is a community without a voice,” she said. Bella Romero Academy is roughly 87% students of color, most of whom qualify for free or reduced lunch. “There are kids from Somalia, from war camps” attending the school, Smithson said. “They have trauma from the top of their head to their toes. They’re not going to speak up.” Both Smithson and Nelson pointed out that immigrants – whether from Somalia or Latin America – are unlikely to speak out because they fear retaliation from Immigration and Customs Enforcement. Moreover, some parents work for energy companies. They fear losing their jobs if they oppose an oil site near the school.

 In fact, according to Smithson, Nelson, and Speed, Extraction Energy came to Bella Romero because it expected few parents would resist: The company originally proposed these wells adjacent to the wealthier Frontier Academy on the other side of town, where the student body is 77% white. Extraction moved the wells to Bella Romero after an outcry from the school community. This kind of environmental injustice isn’t unusual, and it generated attention from major media outlets, including the New York Times and Mother Jones. You can see how close the wells are to the school in this clip from The Daily Show (and on the SkyTruth image below).

Image 2: Extraction Energy’s facking site near Bella Romero Academy in Greeley, CO. Image by SkyTruth.

 

SkyTruth has resources to help residents, activists, and researchers address potential threats from residential fracking. SkyTruth’s Flaring Map covers the entire world, and users can see flaring hotspots in their region – where energy companies burn off excess methane from drilling operations into the air — and document trends in the volume of methane burned over time. The SkyTruth Alerts system can keep people in Colorado, New Mexico, Wyoming, Montana, Utah, Pennsylvania, West Virginia up-to-date on new oil and gas permits, and new activities in their area of interest.  

 We know that residents and researchers using these kinds of tracking tools can have major impact. Johns Hopkins University researchers used SkyTruth’s FrackTracker program, which identified the location of fracking sites in Pennsylvania, to document health impacts in nearby communities. Those impacts included increases in premature births and asthma attacks. Maryland Governor Larry Hogan cited this information in his decision to ban fracking in his state. Those interested in collaborating with SkyTruth on similar projects should contact us.

Photo 1. Pump jacks at Extraction Energy’s Rubyanna site in Greeley, CO. Photo by Amy Mathews.

 

Although Colorado activists have had limited success so far, this past year did bring some positive changes. The Colorado General Assembly passed SB 181, which directs the Colorado Oil and Gas Conservation Commission to prioritize public health, safety, welfare, and the environment over oil and gas development. The new law also allows local governments to regulate the siting of oil and gas facilities in their communities and set stricter standards for oil and gas development than the state. Colorado agencies are still developing regulations to implement these new provisions.

 Improvements in technology could help as well.  The same day the SEJ crew met with concerned residents, a spokeswoman with SRC Energy explained the state of the art operations at their Golden Eagle pad in Eaton, Colorado. That technology is designed to mitigate impacts on the surrounding community and includes a 40-foot high sound wall, a water tank on site to pump water from a nearby farm (which reduces truck traffic), and electric pumps (to reduce emissions), among other features. Still, the fear of being surrounded by industrial sites remains for many residents.

Photo 2. SRC Energy’s Golden Eagle Pad, Eaton, CO. Photo by Amy Mathews.

 

In the meantime, Karen Speed is starting to look elsewhere for a new home. Shirley Smithson has decided she’s not going to let an oil company ruin her life. And Patricia Nelson will continue to fight for her family.

 “I think about moving all the time,” Nelson told the group of journalists, her voice cracking.  “But my whole family lives here and I don’t feel I can leave them behind… My sister has five children and drives to Denver for work every day…. I have cousins with kids at this school and family friends. Really, moving isn’t an option for me.”

Unusual Behavior by Tankers Near Brazil Oil Spill

The source of the massive oil spill affecting Brazil remains unclear, but unusual tanker activity raises questions.

For months now, oil has been washing up on the beaches of northeast Brazil. The quantity of oil, the large area affected, and the length of time oil has appeared, have generated international news coverage and concern. Government officials, scientists and non-governmental organizations around the world — including SkyTruth — have been trying to identify the source of the pollution; so far, unsuccessfully. Brazilian researchers have identified a likely location for the origin of the spill based on ocean currents. The oil is a heavy consistency that floats below the surface of the water and Brazilian researchers and government officials have claimed that it is likely from Venezuela, although they haven’t published the chemical analysis data to support this.

Photo 1. Heavy oil has been sullying the beaches of northeastern Brazil since early September. The cause remains elusive. [Photo courtesy tvBrasil via Creative Commons license]

At SkyTruth we have been examining available satellite imagery and evaluating some of the theories put forward on the origin of the spill. We haven’t seen any convincing evidence of oil slicks or sources on the images, and we don’t agree with analyses published by others (here and here) that claim to have solved the mystery. I recently decided to take a look at AIS (Automatic Identification System) ship-tracking data in the region that Brazilian researchers identified to be the likely origin of the spill. When I examined the AIS data, I found some unusual behavior by oil tankers passing through the area. 

AIS is a system in which vessels at sea transmit their location at regular intervals via VHF radio. Initially designed for collision avoidance, this location data is also picked up by satellites and provides a global record of vessel movements. I was aided by Global Fishing Watch’s automated modeling of AIS tracks, developed by data scientist Nate Miller, which identifies loitering events, that is, locations where vessels have essentially come to a stop, and are drifting out at sea. Tankers and cargo ships normally maintain a relatively constant transit speed as they are moving from their point of origin to their destination port. Ships may stop out at sea for a number of reasons, including engine problems, waiting for entry authorization at a port, or even at-sea transfers of cargo or refueling. But spending more than 24 hours adrift at sea represents a financial loss for a tanker and would suggest unusual circumstances.

Of hundreds of tankers that moved through the area in the months before the oil was reported, a handful stood out for having lengthy loitering events near the likely area of origin for the spill. One particular tanker, rather than proceeding directly on a course from Spain to Argentina, stopped for two extended periods (each for approximately 14 hours) just within Brazil’s Exclusive Economic Zone (the EEZ area extends up to 200 nautical miles from shore). The tanker I identified with these unusual loitering events is The Amigo, a 133-meter vessel listed as an Asphalt/Bitumen tanker and flagged to the Marshall Islands. 

Figure 1. Tanker loitering events (yellow circles) detected by Global Fishing Watch analytical tools on the coast of northeast Brazil in July and August 2019 (filtered to events longer than 8 hours). Five loitering events near the area thought to be the likely origin of the spill are shown as larger circles and listed in the table below. The AIS track of tanker The Amigo is shown in red. The EEZ boundary marking Brazil’s waters is in green.

We checked for satellite imagery in the area where the vessel was drifting (July 24 – 26) and unfortunately didn’t turn anything up. So any possible association between this tanker and the oil spill is purely speculative. However, some of the circumstances of the vessel’s operation fit with theories on the source of the spill, so we think its activities should be scrutinized further.

The Amigo is an unusual tanker in that it is outfitted to maintain its cargo at high temperature to keep it from solidifying. When the tanker passed through Brazilian waters off Brazil’s northeast coast, it was en route from Cadiz, Spain to a port near Buenos Aires, Argentina. The loitering events occurred between July 24 and July 26 before the vessel proceeded to Argentina. Port records show that on August 10 the vessel delivered 14,000 tons of bitumen (or at least it was scheduled to offload that quantity of product). AIS confirms that the tanker reached dock in Campana, Argentina on August 10. 

The tanker was coming from Cadiz, Spain though we don’t know if the asphalt was actually from Spain or what quantity was loaded at the port facility in Cadiz. Earlier this year the vessel visited Venezuelan ports and imported Venezuelan asphalt to the US. This article from March mentions The Amigo in the context of US sanctions against Venezuela that were coming into force. Could The Amigo have been carrying a cargo of asphalt that originated in Venezuela?

Figure 2. Movements of The Amigo since January 2019. The tanker’s current location in Turkey is shown.

The terms asphalt and bitumen appear to be used interchangeably to describe a semi-solid form of petroleum. High heat tankers like The Amigo must maintain their cargo at an elevated temperature so that it does not solidify, and can be pumped out of the vessel. Problems with heating might result in product remaining in one of the ship’s tanks and needing to be flushed out. Even under normal operations, heavy oil residue can build up in the cargo tanks and needs to be washed out or removed to free up usable space. International law requires that this be done in port where the oily sludge can be treated, but many ports lack the necessary treatment facilities. If somehow asphalt did end up being discharged directly into the ocean it would be expected to drift below the surface in warm equatorial waters. This might not generate a large surface oil slick that could be seen on satellite images, possibly explaining our frustration here at SkyTruth. 

As mentioned, there are some legitimate reasons for a tanker to be drifting out at sea. But we think it is fair to pose some further questions about this vessel given the severity of the spill in Brazil. What prompted the vessel to halt its normal transit off Brazil? What was the origin of the asphalt carried by the vessel and what quantities were loaded and offloaded? Could the chemical properties of the oil found on Brazilian beaches match this cargo, or any oily residue remaining in The Amigo’s cargo tanks?

But it’s not just The Amigo that’s raising questions for us. We’ve detected loitering events by other tankers in recent months (as shown on the map above and in the table below). We’ve found evidence of likely bilge-dumping by a few vessels in the area. And we’ve noticed that more than a dozen tankers operating in this area turn their AIS off while at sea, apparently in violation of international maritime safety law.

Table 1. Table showing the five tanker loitering events detected near the likely source of origin of the Brazil oil spill, shown as large yellow circles on the map at top.

We hope to find out answers to some of these questions soon, and we will continue to investigate all available data that might help to identify the origin of this devastating oil spill. One problem is very clear: we don’t know everything we need to know about the tanker activity near Brazil, and in many other parts of the ocean. 

Update 19 Nov 2019 – Since posting this last week I’ve had a chance to get some input regarding the Bitumen tanker I identified as of particular interest, The Amigo. The 14,000 tons they were scheduled to offload in Argentina would represent close to the full carrying capacity of the vessel. With estimates of at least 2,000 tons of material recovered from the beaches it seems that the vessel could not be responsible if they delivered a full cargo. 

We remain puzzled by the properties of oil coming up on the beach. It has been clearly reported as floating below the surface which fits with the fact that no large slick has so far shown up on satellite imagery. It has been questioned whether any of the asphalt carried by a vessel like The Amigo would really remain in the water column and be able to float ashore, rather than sinking to the seafloor. So some sort of heavy crude seems to be the most likely source. 

We are continuing to investigate any possible leads on the source of the spill and will share any more information that comes up. 

Bilge Dumping off the Coast of Brazil

The cause of the massive oil spill plaguing Brazil’s beaches is still unknown, but monitoring reveals a potential new bilge dumping incident

We still haven’t found the cause of the massive oil spill that’s been plaguing Brazil’s beaches since early September.  

But SkyTruth’s continued surveillance of the coast of northeastern Brazil, in response to one of the country’s worst oil-related environmental disasters ever, has uncovered what appears to be another previously unreported bilge dumping incident off the coast of Joao Pessoa in the state of Paraiba. Located about 20 km offshore, a 25 km-long slick appears to originate from the Grajau, a Brazil-flagged liquefied petroleum gas (LPG) tanker. Slicks such as this are a hallmark of the intentional dumping of untreated, oily bilge wastes from vessels underway at sea, although there may be other explanations for this slick (for example, the ship was experiencing a serious mechanical problem). The slick (a long, dark streak) and vessel (a bright spot at the south end of the slick) are shown on this Sentinel-1 radar satellite image taken on the 19th of July. We identified the vessel using their public AIS tracking broadcasts, extracted from the ShipView vessel-tracking platform. The image was captured at 07:53 UTC; a careful look at the AIS broadcasts from Grajau just before and after the image was taken show that the vessel we can see on the radar image is very likely Grajau.

Recent discoveries of bilge dumping in the Atlantic Ocean along Brazil’s coast reveal that this is a persistent problem that — as in many places — lacks effective enforcement. None of the slicks we’ve seen appear big enough to be the source of the oil plaguing Brazil’s beaches. This potential bilge slick from Grajau is no exception: it’s a modest-sized slick compared with the dozens of bilge slicks we’ve seen from other places around the world that are occasionally more than 100 km long. And this slick, just 20 km offshore, probably would have dissipated or washed ashore several weeks before the thick globs of heavy oil began to appear on the beaches in early September.

Nevertheless, bilge dumping is a chronic source of oil pollution in the ocean that has been hidden for too long. Now that we can see it, and can identify the likely polluters, it’s time for governments to take action to bring this illegal practice to an end.

AIS ship-tracking broadcasts (red dots) from the Brazil-flagged LPG tanker Grajau, overlain on a Sentinel-1 radar satellite image showing an apparent bilge-dumping slick (dark streak) and the vessel that appears to be responsible (bright spot, indicated within the red circle). Based on the AIS data, we think this vessel is likely the Grajau. See inset map at upper right for detail. Image was collected at 07:53 on July 19.

The location of the boat, relative to Brazil’s coastline.

New Data Available on the Footprint of Surface Mining in Central Appalachia

The area of Central Appalachia impacted by surface mining has increased — by an amount equal to the size of Liechtenstein — despite a decline in coal production.

SkyTruth is releasing an update for our Central Appalachian Surface Mining data showing the extent of surface mining in Central Appalachia. While new areas continue to be mined, adding to the cumulative impact of mining on Appalachian ecosystems, the amount of land being actively mined has declined slightly.

This data builds on our work published last year in the journal PLOS One, in which we produced the first map to ever show the footprint of surface mining in this region. We designed the data to be updated annually. Today we are releasing the data for 2016, 2017, and 2018.

Mountaintop mine near Wise, Virginia. Copyright Alan Gignoux; Courtesy Appalachian Voices; 2014-2.

Coal production from surface mines, as reported to the US Energy Information Administration (EIA), has declined significantly for the Central Appalachian region since its peak in 2008. Likewise, the area of land being actively mined each year has steadily decreased since 2007. But because new land continues to be mined each year, the overall disturbance to Appalachian ecosystems has increased. From 2016 to 2018 the newly mined areas combined equaled 160 square kilometers – an area the size of the nation of Liechtenstein. One of the key findings of our research published in PLOS ONE was that the amount of land required to extract a single metric ton of coal had tripled from approximately 10 square meters in 1985 to nearly 30 square meters in 2015. Our update indicates that this trend still holds true for the 2016-2018 period: Despite the overall decrease in production, in 2016 approximately 40 square meters of land were disturbed per metric ton of coal produced – an all time high. This suggests that it is getting harder and harder for companies to access the remaining coal.

Active mine area (blue) and reported surface coal mine production in Central Appalachia (red) as provided by the US Energy Information Administration (EIA). The amount of coal produced has declined much more dramatically than the area of active mining.

This graph shows the disturbance trend for surface coal mining in Central Appalachia. Disturbance is calculated by dividing the area of actively mined land by the reported coal production for Central Appalachia as provided by the EIA.

Tracking the expansion of these mines is only half the battle. We are also developing landscape metrics to assess the true impact of mining on Appalachian communities and ecosystems. We are working to generate a spectral fingerprint for each identified mining area using satellite imagery. This fingerprint will outline the characteristics of each site; including the amount of bare ground present and information about vegetation regrowing on the site. In this way we will track changes and measure recovery by comparing the sites over time to a healthy Appalachian forest.

Mining activity Southwest of Charleston, WV. Land that was mined prior to 2016 is visible in yellow, and land converted to new mining activity between 2016 and 2018 is displayed in red.

Recovery matters. Under federal law, mine operators are required to post bonds for site reclamation in order “to ensure that the regulatory authority has sufficient funds to reclaim the site in the case the permittee fails to complete the approved reclamation plan.” In other words, mining companies set aside money in bonds to make sure that funds are available to recover their sites for other uses once mining ends. If state inspectors determine that mine sites are recovered adequately, then mining companies recover their bonds.

But the regulations are opaque and poorly defined; most states set their own requirements for bond release and requirements vary depending on the state, the inspector, and local landscapes. And as demand for coal steadily declines, coal companies are facing increasing financial stress, even bankruptcy. This underlines the importance of effective bonding that actually protects the public from haphazardly abandoned mining operations that may be unsafe, or unusable for other purposes.

We are now working to track the recovery of every surface coal mine in Central Appalachia. By comparing these sites to healthy Appalachian forests we will be able to grade recovery. This will allow us to examine how fully these sites have recovered, determine to what degree there is consistency in what qualifies for bond-release, and to what extent the conditions match a true Appalachian forest.