Mapping Potential “Drillout” Scenarios in Allegheny County, Pennsylvania Webinar

SkyTruth is hosting a webinar at 1:00p EDT this Thursday, May 9th, to talk about our new app illustrating potential natural gas drilling scenarios in Allegheny County, Pennsylvania. The SkyTruth team will walk through how to use the app, and we will show how implementing a range of setback distances and well spacings can lead to very different futures for southwestern Pennsylvania.

PA and WV Drilling Alerts have Moved to SkyTruth Alerts

If you’ve been on the Pennsylvania Drilling Alerts or West Virginia Drilling Alerts pages lately, you know that they’ve been semi-broken for a while. The technology we’re using on the Drilling Alerts pages is pretty old and will be retired soon. However, you can now do the same county monitoring in SkyTruth Alerts. We’d love it if you’d take it for a spin and tell us what you think.

The PA and WV Drilling Alerts pages have been semi-broken for a while.

We’ve set up two public accounts at SkyTruth Alerts — one for Pennsylvania counties and one for West Virginia counties — that will let you view county alerts in pretty much the same way you did on the Drilling Alerts pages, and with some extra features that we use in-house and hope you’ll find useful too.

To view Drilling Alerts at SkyTruth Alerts:

  1. Go to https://alerts.skytruth.org
  2. Select Login from the top right of the map.  Log in using the UserID and Password information below.

    UserID: Pennsylvania or WestVirginia (no spaces)
    Password: skytruth
  3. Select the My AOIs tab from the left sidebar and choose a county.
  4. Select the Alerts tab from the left sidebar and choose which alerts you want to see.
  5. You can opt to view only alerts within the county you selected and view alerts for a particular date range (Alerts tab).
  6. You can also view near-real-time satellite imagery to help you assess what’s happening on the ground (My AOIs tab).

If you plan to keep using SkyTruth Alerts, consider creating your own account. You’ll be able to keep your settings instead of having to select them every time you log in, and you can optionally receive email notifications when new alerts come in. If you have comments, suggestions, questions, etc., contact us at feedback@skytruth.org.

Allegheny County Drilling App Receives Its First Update

The SkyTruth app that maps potential drillout scenarios across the landscape of Allegheny County, PA has officially received its first update! In an effort to make the experience more user-friendly, explanatory text and tips have been added. Our app has also been updated to remove from the drillout scenario areas such as major highways and the Pittsburgh International Airport, where drilling would obviously not take place.

A screenshot of the app when first initialized.

At the request of some users, we’ve also tabulated the results for the potential drillout scenarios by municipality.  See the results in this table showing the number of occupied structures within two miles of a hypothetical drilling site, based on a given setback distance (in feet) and drilling site spacing (in acres), for every township and borough.  

We were also asked to calculate the number of occupied structures located within 500 feet, and within two miles, of existing Marcellus Shale drilling and fracking sites. According to our analysis, 78 occupied structures fall within 500 feet of an active drilling site in Allegheny County and 67,673 occupied structures sit within two miles of an active drilling site.  Recent scientific research has found human health impacts for people living within 2 miles of a drilling site.

Be sure to check out these insightful new updates for yourself.  Give the app a try and let us know what you think by contacting Brendan at info@skytruth.org with any feedback you might have!

Bilge slick detail

PERKASA Caught Bilge-Dumping?

Possible Bilge Dumping by Indonesian Cement Carrier in the Strait of Malacca

By Lucy Meyer

On February 15, 2019, a vessel that appeared to be releasing oily waste was captured by satellite almost 10 kilometers offshore Peureulak, a small town in Aceh Province, on the northern tip of the Indonesian island of Sumatra. Radar imagery from the European Space Agency’s Sentinel-1 satellite shows an 18-kilometer slick trailing a northbound ship, visible as a bright spot at the end of the dark slick.

Bilge slick detail
Figure 1. Sentinel-1 radar satellite image showing suspected bilge-dumping (dark, linear slick) off Sumatra on February 15, 2019.

The ship is traveling through the Strait of Malacca, a narrow strip of water between Sumatra and the Malay Peninsula. The Strait is one of the world’s busiest shipping lanes as it is both the shortest and most convenient path between the Indian and Pacific Oceans. Due to the Strait’s high density of marine traffic of all types, oil spills — accidental and intentional — are likely to occur. Figure 1 illustrates suspected bilge dumping, a typically intentional discharge of oily waste from ships to reduce ballast water or free up space in the cargo holds. Typically, bilge-dumps form distinctive linear slicks visible on satellite imagery.

While radar satellite images are very useful tools for detecting slicks, they are typically not detailed enough to allow identification of the responsible vessel. However, many vessels broadcast their identity and other information using the radio-frequency Automatic Identification System (AIS). AIS use is required for all large cargo vessels and tankers. By studying the AIS broadcasts in this area using exactEarth’s ShipView service, which collects the signals using satellites and ground-based receivers, SkyTruth analyst Bjorn Bergman determined the Indonesian cement carrier PERKASA (Figure 2) was at this location when the Sentinel-1 radar image was acquired. Formerly known as KOEI MARU NO 7, the vessel was built in 1981 by Ube Industries, Ltd., a Japanese chemical manufacturing company. Today, the ship is operated by PT Indobaruna Bulk Transport (IBT), an Indonesian shipping company based in Jakarta.

PERKASA
Figure 2. MV PERKASA [source: IBT].
PERKASA AIS track
Figure 3. PERKASA’s AIS broadcast track overlain on Sentinel-1 image.

Figure 3 shows the PERKASA’s  AIS-derived track overlain on the Sentinel-1 image, revealing a very close match between the vessel’s path and the suspected bilge slick. The AIS signal immediately to the south of the vessel location on the image indicates it was traveling 11 knots (~20.4 km/h) at 11:17 UTC;  the signal immediately following at 12:10 UTC indicate the vessel was traveling 10.8 knots (~20.0 km/h). Using the location data encoded with these AIS signals, we calculated the likely position of PERKASA at the instant the image was acquired (11:43 UTC). The ship’s predicted location closely matches the vessel’s position in the Sentinel-1 image, and no other vessels broadcasting AIS were likely candidates for a match. This leads us to infer that PERKASA is the vessel seen apparently discharging oily bilge waste in the satellite image.

Slicks to the south
Figure 4. Zoomed-out view of Sentinel-1 image showing a series of patchy slicks along the coast of Aceh Province, Indonesia. Dark, linear slick at upper left is the suspected bilge slick from PERKASA shown in Figures 1 and 3.

To the south, a chain of less-distinctive slicks along the coast are roughly aligned with PERKASA’s track (Figure 4). These slicks are broad and striated as opposed to the slender 18-kilometer long slick, which could be a result of wind and current blowing apart what had originally been a series of discharges from the vessel. The AIS transmissions from PERKASA are infrequent in this region (Figure 5), making us somewhat less confident that this vessel was also the source of these patchy slicks.

Slicks to the south + AIS
Figure 5. PERKASA’s AIS-derived track overlain on Figure 4.

The operator of PERKASA, IBT, claims “we put high priority in safety by adhering to policies, practices, and procedures in our Safety Management System to ensure the safety of crews, staffs, cargoes, vessels, as well as environment.” In addition nearly all of IBT’s fleet is registered with classification societies. According to The International Association of Classification Societies (IACS), the purpose of a classification society is “to provide classification and statutory services and assistance to the maritime industry and regulatory bodies as regards maritime safety and pollution prevention.” IACS is a non-governmental organization composed of twelve classification societies.  PERKASA is registered with Biro Klasifikasi Indonesia (BKI) and Nippon Kaiji Kyokai (ClassNK), which is a member of IACS.  

One of the certification services provided by ClassNK is the Verification for Clean Shipping Index (CSI). The objective of CSI is to verify the environmental performance of a vessel’s operations in five areas, including water and wastes. Ballast water, sewage/black water, garbage, sludge oils, and bilge water are covered under this category.

Bilge dumping — intentional or otherwise — would seem to violate the principles touted by the vessel operator, and call into question the effectiveness of the classification societies.  


What can we learn from the longest oil spill in US history?

[This is a guest post about the ongoing Taylor Energy oil spill from Dr. Ian MacDonald, oceanographer at Florida State University. Ian helped SkyTruth make independent estimates of the size of the Deepwater Horizon oil spill in 2010 that dwarfed the estimates told to the public by BP.]

As recently as two days ago — March 13, 2019 — pollution experts at the National Oceanic and Atmospheric Administration were reporting a 14 square-mile oil slick that originated out in the Gulf of Mexico about 12 miles from the Birdfoot Delta’s farthest bit of land.  By now there are hundreds of satellite and aerial images telling the same, sorry story. The source is the wreck of MC20A, an oil platform owned by Taylor Energy Company that was destroyed by winds, waves, and mudslides spawned by Hurricane Ivan in 2004. Last fall, the Coast Guard and other agencies federalized the response to an oil spill that has been going on for fourteen years and counting, disinviting the company from the latest effort to stem the flow by attaching a massive containment dome to what remains of the platform.  Although the company has long insisted that the spill is trivial–no more than 10 gallons per day–a growing chorus of scientists have disagreed, by orders of magnitude. My personal estimate is 96 barrels (4032 gallons) per day, and I tend toward the low end of the scientific opinions.

Why the Feds changed their mind, and how come it took so long, are questions I address in a report on the longest offshore oil spill in U.S. history.  I tell the story from my perspective as an oceanographer who studies natural and unnatural oil inputs to the ocean, and based on what is now over seven years of funded research on MC20A.  

Storms like Ivan seem to be growing more common.  The sediments lost from the drastic reduction of Louisiana wetlands have been deposited on the slope in huge mud lobes–some of which will inevitably slide toward the sprawling network of aging platforms and pipelines that surrounds the Delta.  The lessons we learn from MC20A, and the response by a unified command under the direction of the US Coast Guard, may be put to the test again, possibly much more severely than with MC20A.

Will we be ready?
Read my report to learn more.