SkyTruth and COVID-19: A message from the President

SkyTruth continuing to protect the environment from remote offices. 

Dear friends, partners and supporters: the staff, board and I wish all of you as much kindness, strength, good health, and good cheer as these difficult times allow. In case you were wondering, I can assure you that SkyTruth is well equipped to adapt to these extraordinary circumstances. We’re in a good financial position. Our staff and contractors are comfortable with, and experienced at, working as a distributed team: we have well-tested tools to facilitate remote work and data sharing, and a rigorous schedule for communications to keep everyone in touch and on track. To help slow the spread of coronavirus during this critical window of opportunity to “flatten the curve,” we closed our Shepherdstown office three weeks ago, and all staff are working from home until further notice.

I’m convinced the need for our work is even greater during this crisis: the White House assault on the environment continues at a breakneck pace. Despite the staff shortages and chaos resulting from the rapidly spreading COVID-19 pandemic, the Environmental Protection Agency, Bureau of Land Management, and other Federal agencies are under pressure to continue rolling back regulations that were put in place to protect human health and the environment. And the EPA just announced a “sweeping relaxation” of pollution reporting requirements for power plants, oil refineries, and other industrial sites, leaving the public in the dark about the ongoing leaks, spills and other toxic incidents happening at facilities that are often located right next door.

This tunnel we’re in may be long, but there will be an end to it. That’s why SkyTruth will continue to shine a light on the way our lands and waters are being managed, to support effective public participation in government decision making, and to inspire better protection of the environment that we need — now and in the future — to heal and sustain us.

As always, feel free to contact me if you’d like to give me some feedback or learn more about how we’re weathering this storm. I would love to hear from you.  – John

South Pesisir Regency, Indonesia ©2020 Map data: Google Earth View  imagery CNES / Airbus, Maxar Technologies.

What’s a Mathematician Doing at SkyTruth?

Alice Foster discovered her love for geology at Brown University, and meandered onto SkyTruth’s path.

My name is Alice Foster, and I started as an intern at SkyTruth this past January. But my journey to SkyTruth was a bit unexpected. I am currently studying applied mathematics at Brown University. And until recently, I was somewhat unenthusiastic about science, although I was interested in conservation issues.

Then, in search of an introductory environmental studies class at my first academic fair, I ended up talking to a professor at the Department of Earth, Environmental, and Planetary Sciences table. She convinced me to try out her class, which she said offered a good foundation for understanding environmental issues. In the opening lecture, I was a bit disappointed to learn that the class was about geology; lacking any understanding of the subject beyond an earthquake project in seventh grade, I associated the word with something vaguely boring and irrelevant. But after a few minutes, I was hooked. I found it beautiful to understand how mountain ranges and canyons and plains come into being, and to try to wrap my head around the massive time scales on which geological processes take place. Learning about crystal deformation at a molecular level was fascinating because it could explain how an entire glacier moves. Everything seemed to fit together. Over the course of the semester we applied physics and chemistry, satellite and seismic imagery, and logic to solve Earth’s riddles. 

One of my favorite topics covered in that class was meandering rivers, a concept I identified with. A meander forms a curve in a river: fast-moving water wears away at the outer bank, while sediment transported by slower-moving water amasses at the inner edge, creating a point bar. This process of erosion and deposition makes the bends bendier and the river wander. 

If you look at outcrops on the side of a road, you might spot evidence of ancient meandering rivers. A fast-moving river can transport and deposit large pebbles in its channel. When the water changes course, the former channel becomes part of the river’s floodplain. At times, the river overwhelms its banks and leaves behind sand and clay to overlay the old layer. Some years later, the channel might shift again and deposit larger grains on top of the fine particles. In the rock record, these deposits can appear as beds of shale interspersed with conglomerates.

Alice camping with friends. Photo by Ailita Eddy.

The summer after I took this geology class, I encountered a magnificent meandering river near a farm I worked at in Iowa. Tall trees with lush foliage grew on one bank; a cow pasture bordered the other. I liked to walk down the road to a bridge overlooking the river. I imagined it all playing out: water flowing around the outer edge and loosening soil from the steep bank, bits of rock bouncing chaotically along the riverbed, and the inner bank growing thick with silt. In millions of years, the vestiges of the river might lie deep beneath the ground, compacted, cemented, and turned to stone. 

Since then, my interest in geology and climate science, combined with my love for mathematics, has informed my meandering career exploration. This semester, I decided to take a break from school and homework and experience new things. I wanted to intern at SkyTruth because SkyTruth’s work combines many of my greatest passions, and because I felt excited about contributing to work that could benefit others. It is amazing to see up close how SkyTruth uses geospatial technology to solve tangible problems. I get to think about math and geology while engaging with immediate conservation issues around the world. 

Right now I am working on monitoring bilge dumping in oceans around the Arabian Peninsula, Africa, and Brazil. I am also working with SkyTruth staff to digitize natural gas well pads for a machine learning model. This model will allow SkyTruth to automatically identify well pads in Alaska and Patagonia.

As an intern I have had the chance to learn how to create maps in QGIS and how to program in Google Earth Engine. QGIS is a geographic information system application that can be used to analyze and visualize geospatial data such as satellite imagery or a ship’s track across the ocean. I have also gotten to reflect on what I might want my career to look like. I love getting to be part of a welcoming, supportive, super knowledgeable, all-around wonderful group of people pursuing new projects and ideas. Though I am unsure of my path, this is the kind of environment I will look for as I embark on my career.

Alice made this on a letterpress printer using a linoleum carving block and metal type. “Wild Geese” is one of her favorite poems. She wanted to create an image having to do with the refuge one can find in the natural world. Credit: Alice Foster

Bilge Dumping at Sea: Why Should I Care?

Scientific research on the impact of oil pollution on marine life and coastal communities, combined with evidence of frequent bilge dumping, suggests oily bilge could be harming marine ecosystems and coastal economies.

This is the second entry in a multi-part series revealing the significance of bilge dumping globally.

Last year SkyTruth reported 163 accounts of likely bilge dumping across the world, from Brazil, to the Mediterranean, to Southeast Asia and elsewhere. As we described in our recent post,  bilge dumping is the illegal release of untreated oily wastewater from a vessel’s lower hull. This wastewater, or bilge, appears as an oil slick in the ocean, which eventually disperses and can migrate to vulnerable coastlines.  

Because it happens out at sea, bilge dumping traditionally has been an enigmatic source of pollution and challenging to consistently monitor. Although SkyTruth is working to change that, so far the negative effects of bilge dumping are sparsely documented. To explore the potential impacts of frequent bilge dumping worldwide, we can start by considering the contaminants oily bilge waste contains. Oily bilge waste water is the byproduct of operating ocean-going vessels and, according to the Environmental Protection Agency, contains contaminants such as lubricants, grease, and cleaning fluids, as well as harmful or toxic metals such as arsenic, cadmium, chromium, lead, and selenium, some of which are known or probable carcinogens. Other harmful substances in bilge can include organic chemicals such as benzene, chloroform, hexachlorocyclohexane isomers, and naphthalene

The size of tankers and container vessels that dump their waste can help us understand the amount of pollution they are emitting. Commercial marine vessels are some of the largest machines in the world, with some measuring 131 meters (143 yards) in length; comparable to the size of a small skyscraper. The engines in these vessels can be as large as three buses and have up to 333 times more horsepower than the engine of a midsize car. Their large size makes cargo vessels very efficient for transporting goods; but if the waste from these massive engines routinely ends up in the oceans, their environmental impact can be substantial. Even two decades ago, researchers reported that ocean-going vessels generated millions of tons of waste annually. A 2003 report by the nonprofit conservation group Oceana estimated that in European waters alone “illegal dumping and routine operations of vessels account for between 666,000 and over 2.5 million tons of hydrocarbons of marine pollution per year.” That amount is up to 70 times greater than the Exxon Valdez oil spill and is likely even greater today. Over a 20 year span from 1992 to 2012, the amount of ocean-going traffic has grown by 300%, increasing the likelihood of even more vessel pollution. 

A large research collaboration published by The National Academies Press (2003) found that between 1990 and 1999 vessels (in contrast to pipelines or facilities) in US waters produced the largest oil spills. Additionally, this research reports that 12 percent of the total petroleum hydrocarbons found worldwide in the oceans were from “accidental spills and operational discharges of cargo oil occurring during transportation of petroleum products.” This accounted for 160,000 tonnes of oil annually; the equivalent of four Exxon Valdez oil spills every year. 

Exxon Valdez oil spill [photo courtesy ARLIS, Alaska Resources Library & information Services]

Exxon Valdez oil spill [photo courtesy ARLIS, Alaska Resources Library & information Services]

The negative effects of bilge dumping can be seen in the United Arab Emirates. In 2017, one of the emirates, Fujairah experienced three oil spills in just two months. Locals reported that this contributed to a significant decrease in local hotel bookings and left dead fish and black oil on the shores. Last year, nine Brazilian states and 132 beaches were impacted by multiple mysterious incidents of oil washing up onshore. The cause of these incidents still has not been determined, but one possibility is a series of bilge dumping incidents. The impact occurred in multiple biodiverse tourism areas, specifically in Brazil’s oldest national park

SkyTruth also continues to find oil offshore Nigeria, in the Gulf of Guinea. And while this oil is mostly a consequence of energy infrastructure, we suspect this oil stems from bilge dumping as well. Nigeria’s Niger Delta, which drains into the Gulf of Guinea, experiences periodic water contamination from heavy metals due to extensive energy development, so much so that the delta has been called the “oil rivers.” Over a 38 year timespan, 12,000 oil spills were reported in the delta. Communities often use this water untreated for cooking or drinking as well as for local agriculture and fish farming. 

Heavy oil has been sullying the beaches of northeastern Brazil since early September. The cause remains elusive. [Photo courtesy tvBrasil via Creative Commons license]

Recently, an environmental activist and resort director contacted SkyTruth after repeatedly discovering remnants of oil and tar washing up on beaches near Singapore and the Strait of Malacca, one of the world’s busiest shipping lanes. This local activist continues to report regular incidents that they believe may be the result of bilge dumping. 

When oil washes up onshore, our Southeast Asian source states that it sometimes can be small and relatively easy to clean up, but at times, when it’s a bad spill, “it can be barrels full of it, or it can be thick tar balls, sometimes five to six inches across — so large that they look like they came out of a pipe,” he told us. The oil releases a “distinct petroleum smell” and “if it gets in amongst the rocks it can take months to clean out,” he told us. “If it washes up on a beach at high tide, it melts in the sun and is terribly messy to clean up.” Most incidents happen during the northeast monsoon season when the region gets stronger winds; however, outside of this season oil still lingers. “I can almost always walk down a beach and find some,” he told us. 

Video of oil globs from suspected bilge dumping washing up on a beach in Southeast Asia in February 2020. Video by anonymous.

Studies from oil spills suggest that oil at sea disperses over a period of days to weeks, and some of this oil can wash up on coastlines, potentially harming ecosystems and soiling beaches. Vessel bilge dumping incidents typically receive less attention than large oil spills: they are much smaller-scale events, but occur more frequently and potentially can have a significant cumulative effect. The substantial scientific literature analyzing the effects of large-scale historical oil spills — most notably BP’s Deepwater Horizon and the Exxon Valdez — could help shed light on the potential impacts of bilge dumping.

The impact of oil on a community’s natural environment can be very prominent, and it varies. When a slick disintegrates, its components can weather into dense tar balls which pile up on shores, as well form a messy sludge coined chocolate mousse. Well-protected clean-up teams are needed to carefully remove oil from coastal areas.

One unsettling outcome from oil in the water is its effects on marine life — from acute to progressive diseases. After the Deepwater Horizon oil spill, dolphin deaths from lung and adrenal lesions increased, and reproduction decreased, which scientists believe could be linked to exposure to oil. In addition, a multi-state natural resource damage assessment estimates that as many as 102,000 birds were killed or harmed during the Deepwater Horizon spill. Mangroves and coral reefs in Brazil, Panama and Singapore have been harmed by oil in the water. Human health can also be affected. One survey from an oil spill in Pakistan in 2003 found those who lived near the coastline experienced eye, skin, and respiratory health symptoms, asfumes and a mist of oil in the air.” Far worse, years after an oil spill offshore Spain, some cleanup workers of the spill showed signs of genetic mutations in their blood, potential catalysts for more serious disease. 

Lastly, oil spills have triggered social and psychological distress. After the Deepwater Horizon disaster, some impacted individuals were found to have high oil related stress and PTSD related symptoms. This discomfort led to lengthy lawsuits and ongoing political protests by citizens who felt that the energy company responsible, BP, was not taking full responsibility. 

Bilge dumping is unlikely to trigger such large-scale reactions. However, based on what SkyTruth has documented over the past year, we believe that bilge dumping could be the stealthy, less recognized cousin to large oil spills, that cumulatively leads to large amounts of oil in ocean waters and coastlines. Perpetrators often evade prosecution and accountability, leaving communities to bear the impacts and costs. 

Although scientific research on bilge dumping per se is limited, harmful impacts of oil pollution on marine life, human health, and coastal communities are well documented. Given the dozens of likely bilge dumping incidents SkyTruth has revealed over the past year, and the concerns expressed to us by coastal residents, we believe bilge dumping could be a sleeper source of oil pollution in the sea. It’s time to do something about it. 

 

New Intern Matthew Ibarra Shifts from Aerospace Engineering to Protecting the Planet from Space

Matthew thought he wanted to be an aerospace engineer when he started college. Then he learned more about environmental damage to the planet.

Hello There!

My name is Matthew Ibarra and I am a new intern at SkyTruth. I am currently a student attending West Virginia University (WVU). Originally I came to WVU to study mechanical and aerospace engineering. I have always been passionate about math and science and so naturally I believed engineering would be a perfect fit for me. I was a part of my robotics team in high school and I believed this would be something I could do forever. 

However, as my time at WVU went on I became much less interested in engineering and I decided that I wanted to study something else. Through my engineering classes I inadvertently learned more about energy and from there about renewable energy sources. I developed a passion for renewables and I decided I wanted to shift my focus of study and work on environmental challenges. I have always felt there is a lot more bad news than good news in the world and I kept hearing about problems such as massive deforestation in the Amazon, pollution of the planet and the oceans — and those were just the tip of the melting iceberg. I wanted to do something that would leave a lasting impact. All of these factors pushed me to change my major to Environmental and Energy Resource Management. And it was the best decision I have ever made. 

Matthew played saxaphone for the WVU marching band and currently plays clarinet in the WVU Concert Band and saxophone in the WVU pep band. Photo by Roger Sealey.

My best friend Amanda’s mother Teri works at SkyTruth as our office administrator, which was very serendipitous for me. Amanda told me about SkyTruth and I was excited to learn how SkyTruth gathers environmental data and conducts research using satellite imagery. I was intrigued because it seemed like SkyTruth worked in all the areas I was passionate about: the environment, technology, and research. I looked into some of SkyTruth’s current and past projects and the ones that excited me the most include FrackFinder, which helps keep track of the environmental impacts of fracking for natural gas. I was also excited about SkyTruth’s interactive maps that help track the removal of mountaintops from coal mining. SkyTruth works on many other projects that I knew that I wanted to be a part of as well. An internship at SkyTruth was the perfect way for me to not only help work on projects I cared about, but also to learn more about what I am interested in.

As an intern I am currently working to monitor the South East Asia region for bilge dumps. Bilge dumps are illegal practices by vessels that attempt to bypass pollution control and dump their oily ballast and waste water at sea. I am collecting useful data that will contribute to a machine learning program that can automatically detect bilge dumps from satellite images around the world. I am also working to update FrackFinder to include data from 2016 and create an interactive map that can easily display information such as natural gas well pad locations in West Virginia, and when they were drilled, to show how natural gas fracking has impacted West Virginia over time.

I am passionate about sustainability and hope to make this central to my career. Sustainability is the notion of living your life in such a way that you leave resources for the people who come after you. After my time here at SkyTruth I hope to go into government work. I would like to work for the Department of Energy in the Office of Energy Efficiency and Renewable Energy. Fossil fuels will eventually run out and a transition to renewables will help current climate and environmental issues. I feel that it is important to find solutions now and transition our power needs to something that is more sustainable while we are still able to do so. 

Matthew admires Blackwater Canyon in West Virginia. Photo by Matthew Ibarra.

I believe SkyTruth is important in achieving my goals because I am gaining valuable skills and knowledge that I know will help me in the future. I love working with Geographic Information System programs (GIS). GIS is essentially using computers to analyze physical features of the Earth such as measuring forest density or tracking changing temperatures; it has almost endless applications.  I am learning to work with Google Earth Engine which is essentially a super powerful and intuitive way to work in GIS. Earth Engine requires me to be able to code in the programming language JavaScript and so I’m learning that skill as well. These are skills that will be forever relevant in the future and I am excited to deepen my understanding of them.

When I started college five years ago I never thought that I would end up where I am today. I spent so many sleepless nights trying to finish my physics homework and study my chemistry notes. I never thought that I would want to give all that up to work in something completely different, but I am thankful I did. I am eager to be learning something new every day at SkyTruth and I am thankful to everyone who helped me get to where I am today. I am excited to continue my internship here and keep learning more about what’s important to me.

Matthew is a hockey fan and celebrated the DC Capitals’ Stanley Cup victory in 2018. Photo by Photos Beyond DC.

 

 

7 Things You Didn’t Know You Could Do With SkyTruth Alerts

SkyTruth Alerts is better than ever. Learn how to make our new Alerts work for you.

SkyTruth’s new Alerts app is a year old! Or, in human terms, our new Alerts is in early childhood, a period of tremendous growth across all areas of development with occasional wobbles and stumbles.

SkyTruth Alerts show subscribers and users where environmental incidents have occurred in their Areas of Interest (AOIs), particularly for oil and gas activities. In making Alerts available to the public — at no charge — SkyTruth has provided access to tools, data and satellite imagery that environmentalists and citizen-scientists otherwise wouldn’t have. You can learn more about SkyTruth Alerts here

In 2018, we gave Alerts a facelift and SkyTruth began looking for additional datasets that would help subscribers monitor their AOI. We’ve expanded oil and gas permitting to include West Virginia, Colorado, Wyoming, New Mexico, Montana and Utah. We’ve also added pollution alerts for Florida, New Mexico and New York. (If you’d like to see more datasets, let us know!)

The new Alerts was developed to meet three goals: 

  • Provide users access to satellite imagery;
  • Give users the ability to create, annotate and share their own custom maps;
  • Enable a quicker process for adding new Alert data sources.

Whether you’re a longtime Alerts subscriber or are just starting out, here are seven features you might have missed.

1. Drawing Setback Distances Around an Alert

While Alerts incidents are generally tied to a specific point on a map, they can also greatly affect the surrounding areas. Alerts helps highlight these areas of impact by letting you define setback distances around an incident. (For example, you may get an Alert that your state government has issued a permit to drill and frack a new gas well in your AOI, and you want to create a map showing the 2500-foot zone of potential public health risk around that drilling site.)

Start by viewing the full details of an incident, either by clicking on an incident from an Alerts email, or when navigating the map by clicking an Alert icon, followed by the View Full Report link from the pop-up window.

You’ll find the Draw setbacks link at the top of the left sidebar. After clicking this link:

  1. Select a unit of measure (meter, km, mile).
  2. Select a distance.
  3. Click Draw.
  4. Repeat as necessary.

2. Navigating by Latitude/Longitude

Just like every house has its own address (house number, name of the street, city, etc), every point on the surface of earth can be specified by its own latitude and longitude coordinates. Sometimes, a latitude/longitude is all you have. Fortunately the Alerts Location Search box — located on the upper-right corner of the map — will accept these coordinates just as well as a city, state, or house address.

Try it out by on the Alerts Map by seeing where these latitude/longitude coordinates take you:

  • 36.0986, -112.1107
  • 30, -90

Wondering what the latitude/longitude is for where you are on the Alerts map? If you use a mouse or touchpad, Alerts will always show you the lat/lng for the current location of the pointer. You’ll find these coordinates on the right side of the heading, just under the Login link.

3. Search Alerts by Keyword and Time Period

Alerts has about 420,000 incidents in its database. The primary method for narrowing these down to the ones you’re interested in is by moving around the map, zooming in and out, and creating AOIs. You’ll always see the most recent 100 incidents on your current map.

Looking for a specific incident can seem impossible without the additional filtering that Alerts provides:

  • Start and end dates: Enter either or both dates. Results are shown automatically when completing each date.
  • Keyword: Alerts will search all incidents in the current map boundaries for the keyword you enter here. Keyword search is not case sensitive, so TAYLOR and taylor will return the same results. However, the incident must contain your typed keyword(s) with exactly the same spelling, spacing and syntax. 

Click the  when you’re finished typing the search keyword.

Some of the uses of this feature include searching incidents for a specific owner, address, material, well number (for oil and gas permits), or description. Also, many Alerts sources use special keywords to identify incidents. For example, we add the keyword BIGSPILL for spills over 100 gallons reported to the National Response Center, and for spills that we estimate are bigger than 100 gallons. Essentially, any words you see while viewing an incident can be used to search for similar incidents.

Some examples: 

  • ALLEGHENY POWER
  • TAYLOR ENERGY
  • SHEEN
  • AMMONIA
  • PIPELINE
  • INCINERATOR
  • SEATTLE
  • 063-37531
  • BIGSPILL
  • CRUDE

4. Download the Data to Analyze for yourself

Once you’ve got the map positioned just so, with the map boundaries and zoom level showing the area you’re interested in and any required filtering applied, you can take a closer look at the data and even download a CSV or KML file.

Start by clicking the Table view/Download icon, located on the Alerts tab:

You’re presented with a spreadsheet-like view of the data:

Here are some of the capabilities you’ll have:

  • Show top 2000 alerts: check to show the most recent 2,000 instead of 100 incidents.
  • Download KML File: KML files are used in an Earth browser such as Google Earth to layer the incidents visually on a map outside of Alerts. 
  • Download CSV File: CSV files can be opened by spreadsheets or viewed in text editors.
  • Previous and Next buttons take you through the data, page by page.
  • 20 rows dropdown list: allows you to change the number of incidents per page, up to 100.
  • Click on any column header (Id, Title, Incident Date, etc.) to sort on that column. Click again to sort in descending sequence.
  • Pull the vertical bars between column headings to increase/decrease the width of a column.

5. Play a Visualization of How Many Alerts Occurred Over Time

Before running this timeline, position the map with the boundaries and zoom level you want and apply any required filtering.  Start by clicking the Timeline link on the Alerts tab:


Alerts will create annual counts of incidents. Try running the visualization by clicking the
Play button:

From here, you’ll have controls to adjust the visualization:

  • Define how long each step represents (defaults to 1 year): Can select 1, 2, 3, 4, 6, 12, or 24 months.
  • Define how long each step lasts (defaults to 1 second)
  • Select Marker plot or Heat map (defaults to Marker plot): The marker plot visualization will place a marker on the map for each alert; a heat map uses a warm-to-cool color spectrum to show where the incidents are most concentrated.
  • Select a date range (begin and end month/year)
  • Clear markers after each step, or not. If you don’t clear markers after each step, the map will represent a sum of incidents for the current step and and all prior steps.
  • Cluster markers, or not. For marker plots, you can cluster the incidents together instead of showing individual markers. Clustering provides a count of incidents in relative proximity to each other.

You must be logged into Alerts to use the remaining features in this post, making you a SkyTruth Alerts super-user!

6. Measure an Area on the Map

Navigate to any AOI on the map. You may want to switch to the Satellite basemap for a better view of the area. You’ll find basemap selection in the upper-middle section of the map:

Look for something you want to measure, such as a body of water, housing development, industrial complex, or agricultural field.

Start by clicking the Annotations icon , which opens the Annotations window:

There’s a lot to explore here, but for this exercise click the polygon () to start identifying the area you want to measure. You’ll find on-screen help in the Annotations window. In short, you start the measurement by clicking anywhere on the map, then use additional clicks to create new lines around the area you’re measuring. Complete the polygon by clicking the original starting point.

When finished, you’ll have these options:

By checking the Include area checkbox, Alerts will measure and display the selected area in square kilometers.

7. Share a Map Image

Create your custom map — any map! Select the alerts, basemaps, satellite imagery, layers, and annotations you want to show. When the map is ready to share, click the Share icon:

Then click the Download image of map button:

The image that’s downloaded will be a JPG file and can be found where your browser stores downloaded files. It will have a filename starting with skytruthalertsmap followed by the date and time. This is an experimental feature in Alerts and we would appreciate any feedback on its use.

Conclusion:

Alerts is becoming one of the go-to applications in an environmentalist’s toolbox. Soon, you’ll be able to create your own Issue Maps so that you can focus on the area, data, and map controls relevant to a specific topic. We also have high hopes for User Generated Alerts, planned for later in 2020, so you can show the world what’s happening in the places you care about. Stay tuned for new features in the year to come!