AIS Ship Tracking Data Shows False Vessel Tracks Circling Above Point Reyes, Near San Francisco

Analysis from SkyTruth and Global Fishing Watch shows ship tracks jumping thousands of miles from their true locations.

Bjorn Bergman works with SkyTruth and with the Global Fishing Watch research team to track vessels broadcasting false automatic identification system (AIS) locations and to investigate new sources of satellite data for vessel tracking and for detecting dark targets at sea. In this blog post, Bjorn spots an unusual pattern of false AIS broadcasts concentrated at one location, Point Reyes, northwest of San Francisco on the California coast. Why would vessels thousands of miles away be suddenly popping up in circles over Point Reyes? Could this reflect an intentional disruption of the underlying global positioning system (GPS) that AIS relies on, or is there some other explanation for this pattern?

In December 2019, SkyTruth reported on a number of locations on the Chinese coast (mostly oil terminals) where ship tracking positions from the automatic identification system (AIS)  became scrambled as soon as ships approached within a few miles of a point on shore. Importantly, we knew that this was actual disruption of the underlying global positioning system (GPS) — or more broadly the Global Navigation Satellite System — and not just a shipboard AIS malfunction. We determined this because another source of GPS data, Strava’s heat map of fitness trackers, showed the same ring pattern. A quick recent check of the data showed that this GPS manipulation is ongoing at oil terminals in four of the cities (Shanghai, Dalian, Fuzhou, and Quanzhou) where we had detected it last year. We still don’t know if this manipulation is specifically intended to mask ship traffic or if there is some other reason for disrupting GPS.

Following the findings last year on the Chinese coast, I began looking globally for any similar patterns in AIS tracking data around the world. While I haven’t found the precise pattern observed at the Chinese oil terminals outside of China, I did find a somewhat different false AIS broadcast pattern which, strangely enough, appears concentrated above Point Reyes northwest of San Francisco, California in the United States. Although the circling tracks look similar in both locations, the vessels on the Chinese coast were at most a few miles from the circling tracks, while the vessels broadcasting tracks above Point Reyes are actually thousands of miles away. So far I’ve found vessels in nine locations affected. Some of these locations are near oil terminals or where GPS disruption has been reported before, but there is no clear pattern linking all of the affected areas.  

Image 1: AIS tracks from a number of vessels have appeared circling over Point Reyes near San Francisco even though the ships can be confirmed to be thousands of miles away. False circling tracks from five vessels are shown here. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The AIS positions being broadcast over Point Reyes are obviously false (some of them are over land and they show a constant speed and oval pattern we wouldn’t see with a real ship track). But how can we be sure where the ship really is? The most important indication is the location broadcast just prior to the jump to Point Reyes and then where the vessel reappears after the apparent circling finishes. The duration of the circling pattern varies, from less than an hour for one ship in the Indian Ocean, to as much as two weeks for some of the other vessels. However, besides seeing the true locations before and after the jump to Point Reyes, it’s also possible to look at where the AIS receiving satellites were while the vessels were broadcasting positions around Point Reyes.

Image 2: The colored lines show AIS tracks from five of the ships whose broadcast positions jumped suddenly to Point Reyes, California, northwest of San Francisco. The time of the tracking disruption varies from less than one hour for one vessel to about two weeks for some others. Two of the vessels (Princess Janice and Alkahfi Maryam) also have tracks appearing over land in North America. The reason for this displacement is unknown although some of the vessels are in areas where GPS disruption has been reported (Eastern Mediterranean and Sea of Azov). AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

To get an approximate location for one vessel’s real position during the two weeks it broadcast over Point Reyes and the Western United States, SkyTruth analyst Christian Thomas and I analyzed the footprints of the satellites receiving the AIS positions. This was possible thanks to data Spire Global, Inc. provided to Global Fishing Watch. Spire’s data gives the identity of the receiving satellite with each AIS position. This allowed the Global Fishing Watch research team to access orbit information, which they used to calculate exactly the point above the surface of the earth where each satellite was when it received an AIS position and then calculate the distance from the satellite position to the ship’s broadcast AIS position. Because AIS broadcasts are only received within an approximately 5,000 kilometer (3,100 mile) diameter footprint, we know that the vessel was somewhere within this area. We can even narrow down the location further based on successive passes of AIS receiving satellites. 

Image 3: Broadcast AIS positions from Princess Janice. The track makes multiple jumps between a real location in an oil terminal on the coast of Nigeria (inset lower right) and false positions over the United States. Over two weeks in June 2019 the false track initially circles over Point Reyes northwest of San Francisco before veering over the Pacific and over the interior of the United States. More circling is seen around Salt Lake City Utah (inset upper right). AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

This vessel, the Princess Janice, is a crew boat traveling to offshore oil installations. It broadcasts a normal track out of a Nigerian oil terminal until June 5, 2019. For the following two weeks the vessel then broadcasts a false location track circling above Point Reyes and eventually veering off above Utah (during this time the track occasionally jumped back briefly to the Nigerian oil terminal). Unlike other false AIS broadcasts we have documented, which have a constant location offset or flipped coordinate values (producing a mirror image of the actual position), these circling tracks appear to not reflect the true movements of the vessel in any way. 

When we looked at the footprint of the satellite receiving AIS positions from Princess Janice, it’s clear that the vessel remained on a stretch of the central Nigerian coast or in nearby waters in the Gulf of Guinea (see Image 4) throughout the two-week period when false locations were being broadcast. 

Image 4: Princess Janice broadcasts an AIS track over Point Reyes near San Francisco and over the Western United States from June 5 – 21, 2019 (see Image 3). Analysis of the footprints for the satellites receiving these positions demonstrates that the vessel was actually within a region on the central Nigerian coast and adjacent Gulf of Guinea. Frame 1: Location over the Earth’s surface (red dots) of satellites receiving false position messages. Frame 2: Extent of satellite footprints for AIS reception (large red circles). Frame 3: Density of satellite coverage overlap, areas of increasing density shown as Blue → Green → Yellow → White. Frame 4: Area where all satellite footprints overlap (maximum coverage) shown in white. The white shaded region on the central Nigerian coast contains the true location of the Princess Janice during the period when the vessel was broadcasting a false location track. Analysis was done in Google Earth Engine using approximate satellite footprints of 5,000 km (3,100 miles) diameter.

Both the manipulated GPS positions seen on the Chinese coast and these new examples over Point Reyes are characterized by rings of positions. The rings have similar shapes, somewhat wider east to west than north to south. However circles appearing over Point Reyes vary greatly in size and the broadcast vessel courses may be oriented clockwise or counterclockwise around the ring. All speeds are exactly 20 knots. In contrast, the rings on the Chinese vessels last year had positions that were 21 or 31 knots with the 31 knot positions always oriented counterclockwise. Critically, while we could confirm that GPS interference caused the rings of AIS positions on the Chinese coast, we don’t yet know if that is the case with the positions over Point Reyes. An alternative is that this is simply a malfunction affecting the individual ships’ AIS systems. We were able to confirm that the false circling positions over Point Reyes occur in data from all available AIS providers (Orbcomm, Spire, and ExactEarth) and in AIS positions received by both satellites and terrestrial receivers.

The list of affected vessels below (Table 1) shows that many types of vessels in different geographic locations have displayed this same pattern of AIS disruption. Some were in areas where GPS problems have been reported by others (the Eastern Mediterranean, Sea of Azov, Libyan coast); other locations are seemingly random. A number of the vessels, but not all, appear near oil terminals and are involved in supporting offshore platforms. 

TABLE 1.

Table 1: Vessels showing a pattern of false circling AIS positions. Reported locations are where circling tracks appeared (mainly at Point Reyes near San Francisco). Real locations are where the vessel was determined to be while broadcasting the false circling AIS track. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The presence of three of these vessels in areas of documented GPS interference is intriguing. The cargo ship Berezovets shown below was operating in one such area in the Sea of Azov, north of the Black Sea. Following the Russian annexation of Crimea in 2014 and the takeover of Eastern Ukraine by Russian-backed separatists, the front line in the ongoing civil war has cut through Eastern Ukraine north of the Sea of Azov. There have also been conflicts on the water and a Russian blockade of the Kerch Strait leading north from the Black Sea.

Image 5: The Russian flagged cargo ship Berezovets transits through the Sea of Azov in June 2019 and has its AIS track jump suddenly to Point Reyes near San Francisco (inset). Incidents of documented GPS disruption occurred in March 2019 east of the Bilosarai Spit and in July 2019 in the city of Starohnatvka. AIS data courtesy of Global Fishing Watch / Orbcomm / Spire.

The Russian flagged Berezovets transited through the Kerch Strait on June 3, 2019 then headed northeast passing south of the conflict zone towards Russian ports. As the vessel enters Russian waters (location 1 in Image 5) and anchors, its June 4-8 positions broadcast by the AIS system are scrambled, some appearing scattered 20 miles from the vessel’s anchor point. The vessel track then moves east towards port before jumping 20 miles north to a point on land (2) and then jumping about 11,000 miles west to circle above Point Reyes (3). This circling continues for about 60 hours from June 11 – 14, including some irregular positions extending about 40 miles into the Pacific. As with the Princess Janice track, it’s unclear why the false track would jump to California and what accounts for the individual variations in the different tracks we see appearing at this location. On June 14, 2019 the Berezovets AIS track jumps back to the vessel’s real location, now in the Russian port of Azov (4) and can then be seen to proceed eastward up the River Don.  

The unusual disruption in the Berezovets broadcast AIS track was both preceded and followed by similar reported disruptions in GPS in the same region. On March 7, 2019 a Ukrainian military website reported that three vessels on the Sea of Azov experienced failures in their navigation systems. One of these failures occurred the day before, east of Bilosarai Spit (see Image 5). The other two reported disruptions were in the preceding month at other locations in the Sea of Azov. On July 23, 2019 according to a report from the Organization for Security and Co-operation in Europe’s Special Monitoring Mission to Ukraine a UAV (unmanned aerial vehicle) flying over the city of Starohnativka in Ukraine, was one of several UAVs that experienced GPS interference assessed to be likely from jamming. While not conclusive, the proximity of these other reported incidents makes it possible that the disruption seen in the Berezovets track was a result of the GPS interference known to be occuring in the area. 

Two other vessels were also in areas with documented GPS disruptions, Suha Queen II approaching the coast of Libya, and Haj Sayed I transiting from the Suez canal to Eastern Turkey. However, in searching for vessels showing the same circling pattern seen over Point Reyes, I have not yet found that multiple vessels in areas like the Sea of Azov were similarly affected. Global AIS data does show a few vessels with tracks circling over other locations. Two pilot vessels on the Chilean coast had their broadcast positions suddenly jump to circling tracks over Madrid. The Suha Queen II approaching the coast of Libya had its track jump to the Chinese city of Shanwei. The most recent vessel to appear circling over Point Reyes is the Ting Yuk, a tugboat operating in Hong Kong, which had its AIS track disrupted for a few hours at the end of March. 

So far it remains a mystery why these circling AIS tracks are appearing specifically at Point Reyes and a few other locations. It’s tempting to speculate that there might be some connection to a major U.S. Coast Guard communication station in Point Reyes which was an important historic location for developing maritime communications technology. While the Coast Guard left the area several years ago, volunteers continue to maintain at Point Reyes the only operational ship-to-shore maritime radio station. Still, it’s unclear why this location would somehow appear on AIS trackers. The fact that individual vessels in many different locations have been affected is puzzling and it’s unknown if any of these examples reflect actual disruptions of the GPS system. However some studies, such as a yearlong cruise by researchers of the German Aerospace Center which measured instances of GPS interference even during high seas transits, indicate that we may still have a great deal to learn about the true extent of global disruptions to this critical navigation system.