Serious Brainpower Tackled SkyTruth Challenge at AWS re:Invent Hackathon for Good

SkyTruth’s goal to stop oil pollution at sea from bilge dumping is off to a strong start.

The call came two weeks in advance: SkyTruth was chosen to be one of four nonprofits featured at the AWS re:Invent Hackathon for Good held December 2, 2019 in Las Vegas, Nevada. What followed was a frenzy of activity in the SkyTruth offices. Assembling databases for the hackathon teams to work from. Generating FAQs and documentation. Developing materials to share the SkyTruth story. Crafting just the right pitch to lure the best and brightest from a roomful of 150 computer scientists and engineers to work on our challenge — namely, automating the detection of bilge dumping at sea by vessels violating international law and polluting the ocean. 

Finally, the big day arrived. Early in the morning, SkyTruthers Ry Covington, Jona Raphael, and John Amos staffed a table at Vegas’ MGM Grand, offering SkyTruth swag to entice hackers to our cause. 

 

But cool T-shirts and stickers are one thing, and a compelling challenge is another. Here’s SkyTruth President John Amos’ pitch to the crowd: Help us stop oil pollution at sea.

 

 

The competition was tough. Three other worthy nonprofits were vying for the same brilliant brainpower that we were. After a convincing presentation and a little Q & A, SkyTruth attracted seven separate teams with a total of 35 computer scientists and engineers to work on different components of our goal: an automated system that detects bilge dumping every day around the world, identifies the perpetrators, and alerts law enforcement and the public in near real-time.

 

 

Time to roll up the sleeves and work.

 

 

And work.

 

 

And work.  Eight straight hours on laptops, at flip charts, and in discussion. Lots of Red Bull to stay alert and free massages to stay limber after hours hunched over a keyboard. 

 

 

Finally, at 6 p.m. it was time to present the results to the judges.

 

 

And here’s just a sample of what our teams came up with.

 

 

But that’s not the end; it’s just the beginning. We’re still evaluating all of the new material our teams generated and we’re excited about the possibilities. And the week-long AWS re:Invent conference followed the Hackathon, with lots of opportunities to make valuable contacts.

 

 

Have a little fun.

 

 

And, perhaps most importantly, win an AWS Imagine Grant to support continued work to stop illegal bilge dumping at sea. Here’s Vice President of AWS-Worldwide Public Sector, Teresa Carlson, announcing the seven Imagine Grant winners – including SkyTruth.

 

 

With the valuable contacts we made at the AWS re:Invent Hackathon and conference, the volunteers who promised to continue helping us with this project, and support from the AWS Imagine Grant and others, SkyTruth will find a way to stop illegal oil pollution at sea. 

 

Photos by John Amos and Jona Raphael.

Systematic GPS Manipulation Occuring at Chinese Oil Terminals and Government Installations

Analysis reveals precise location and timing of GPS interference but purpose remains unclear.

Last month, an article in MIT Technology Review described strange GPS anomalies  in Shanghai. I began investigating, and have now found evidence of a novel form of GPS manipulation occuring at at least 20 sites on the Chinese coast during the past year. The majority of these sites are oil terminals, but government installations in Shanghai and Qingdao also show the same striking pattern of interference in GPS positioning. We don’t know the reason for this interference. It may simply be a general security or anti-surveillance system but it is also possible that it is intended to avoid scrutiny of imports of Iranian crude which have recently come under U.S. sanctions. Whatever the intention, we are able to demonstrate here, through analysis of vessel tracking data, that this GPS interference can be pinpointed very precisely in both time and location.

According to the MIT Technology Review article, this phenomenon was first documented by the U.S. flagged container ship Manukai when the vessel entered the port of Shanghai in July. The captain noticed that the vessel’s AIS (Automatic Identification System) appeared to malfunction — vessels on the navigation screen appeared and disappeared without explanation and appeared to move when they were in fact stationary. AIS, originally designed for collision avoidance, transmits vessels’ GPS locations, courses, and speed every few seconds via VHF (very high frequency) radio. These signals are not only picked up by nearby vessels and terrestrial antennas, but some private companies have also launched satellites able to receive these signals. For this analysis we were able to use data made available by two of these companies, Spire and Orbcomm, through our research partnership with Global Fishing Watch.

An investigation by non-profit C4ADS (Center for Advanced Defence Studies) showed that AIS vessel locations from hundreds of ships navigating Shanghai’s Huangpu river were coming up at false locations. Strangely, vessels on the river would have their GPS location jump to a ring of positions appearing on land. And this was not just affecting ships; looking at the cycling and running app STRAVA’s tracking map of cyclists, C4ADS also confirmed that this strange pattern of interference was affecting all GPS receivers.

To further investigate the GPS manipulation documented in Shanghai, I examined AIS position broadcasts from ships in the area. A distinct pattern emerged. Upon approaching the area of interference, a vessel’s broadcast position jumps from the vessel’s true location to a point on land where false AIS broadcasts occur in a ring approximately 200 meters in diameter. Many of the positions within the ring had speeds of precisely 31 knots or 21 knots (much faster than vessels would be moving near dock) and showed a course varying depending on the position within the ring. The GPS anomaly appears to affect vessels once they are a few kilometers out from the center of the ring. Once affected, vessels begin broadcasting seemingly random positions within the ring or from other high speed positions scattered around it.

Image 1. The Chinese cargo ship Huai Hia Ji 1 Hao (yellow) transits southeast on the Huangpu river. Upon nearing the center of GPS interference area the track jumps to the ring on land and to other random positions nearby. Positions from other affected vessels are shown in red. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 2. GPS interference can be pinpointed based on this ring of false AIS positions. Approximately 200 meters in diameter, many of the positions in the ring had reported speeds near 31 knots (much faster than a normal vessel speed) and a course going counterclockwise around the circle. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Because the ring of false AIS broadcasts follows this very specific pattern, I was able to query AIS tracking data to check if there are other locations where these rings are also occurring. The results are striking. This GPS manipulation is occuring not only in Shanghai but has occurred in at least 20 locations in six Chinese cities within the past year. The focus of these apparent GPS manipulation devices is clearly oil terminals (where 16 of the 20 detected locations were observed). But three prominent office buildings in Shanghai and Qingdao are also affected: the Industrial and Commercial Bank of China in Shanghai, the Qingdao tax administration office, and the Qingdao headquarters of the Qingjian industrial group.

Image 3. A ring of false AIS positions marks an apparent GPS interference device deployed in an office building identified as the Qingdao tax administration office. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 4. Locations of detected GPS manipulation occuring in six Chinese cities in 2019. Interference following this pattern was not found beyond the Chinese coast.

It seems likely that the centers of these rings of false AIS positions actually mark the physical location of some sort of GPS disrupting device. A device having precisely this effect on GPS receivers, including shipborne AIS systems, has not been previously documented, though there have been other cases of GPS blocking and manipulation. Earlier this year C4ADS published a report with details on GPS manipulation clearly being carried out by the Russian government. These Russian systems appeared to have the effect of making all receiving devices within range show some particular location, such as a nearby airport, rather than the true location of the device. This was seen in one striking example of vessels approaching Putin’s alleged palace on the Black Sea coast.

This Chinese system is clearly being deployed both at central government offices and at the much more remote locations of oil terminals. In the case of the government office buildings it seems likely that these GPS disrupting devices were activated as a security measure. Some are only active for a few days, perhaps to coincide with the visit of an important official. However,  the AIS manipulation occuring at oil terminals particularly interests us at SkyTruth: One possible motive for deploying GPS manipulation devices at oil terminals could be recent U.S. sanctions on Chinese companies importing Iranian crude. And the intentional disruption of a navigation safety system, in close proximity to crude oil storage, is a serious concern.

Almost half of the specific locations where these presumed GPS disrupting devices have been deployed are at oil terminals near Dalian in northeast China. In an August analysis, The New York Times matched Planet satellite imagery from June and July with AIS tracking data to show Iranian tankers delivering oil to China in violation of U.S. sanctions. The Financial Times also documented Chinese flagged tankers importing Iranian crude after ship to ship transfers with Iranian tankers.

I took a closer look at exactly how this GPS disruption is affecting vessel tracking in one oil terminal east of Dalian. Here I identified four locations where GPS disrupting devices appear to have been deployed in 2019. I compared AIS vessel position data from March 1, 2019  and September 5, 2019. The differences were dramatic.

These two days showed similar numbers of AIS positions in the area. But on September 5 approximately two-thirds of the vessel positions at dock disappeared and appeared to be replaced by positions orbiting the GPS disrupting devices or scattered randomly in the region. At the same time, it does appear that some normal AIS broadcasts are coming through and that the GPS disruption does not entirely mask all vessel movements in the area.

Image 5. On March 1, 2019 AIS vessel position data around an oil terminal east of Dalian China shows accurate vessel positions and speeds. On that date, none of the four locations of GPS interference were active. Consequently no vessel positions appear on land and stationary vessels are accurately shown with near 0 speeds (green). AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 6. On September 5, 2019 two GPS interference locations were active and this had a dramatic effect on scrambling vessel positions in the area. Many positions now appear orbiting the presumed GPS interference devices and others appear scattered on land. On the water many positions are appearing with very high speeds (over 25 knots, red) and it’s not possible to distinguish true and false locations. However some slow speed positions (green) are appearing at dock where they would be expected, so some AIS broadcasts appear to be unaffected. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

Image 7. The distribution of AIS speeds in the area is significantly altered by the activation of the GPS interference devices. Above AIS speed distributions are compared between March 1 (left, no GPS interference) and September 5 (right, active GPS interference). On Sept 5 the total number of slow speed positions from docked vessels is greatly reduced and spikes now appear at 21 and 31 knots from positions orbiting the presumed GPS interference devices.

I also examined one individual vessel track to see how it was affected by GPS interference. This is the Chinese flagged tanker Jin Nui Zou which entered the Dalian oil terminal on September 5. Initially a normal track is seen as the vessel approaches the terminal from the southeast. With closer proximity to the presumed interference device, scrambled positions — often with very high speeds — start to appear. Eventually almost all of the vessel’s AIS positions appear in the ring orbiting the interference device.

Image 8. The tanker Jin Niu Zuo approaches an oil terminal east of Dalian on September 5. Initially, positions with normal transit speeds appear (yellow). With closer proximity, scattered high speed positions begin to emerge (red) and eventually most positions appear in the ring surrounding the presumed AIS interference device. AIS data courtesy Global Fishing Watch / Orbcomm / Spire.

The timing of GPS interference at different sites on the Chinese coast can be inferred based on the appearance of AIS positions on land with 21 and 31 knot speeds. Of the 20 locations identified, interference appears earliest at office buildings in Qingdao but only over a couple days (April 17 – 18, 2019). The first GPS interference at oil terminals appears in June and has continued until recently but timing varies by location. Activation of interference at different terminals is intermittent and may be in response to specific events. For instance at an oil terminal near Quanzhou GPS interference appears to have been activated only between September 25th and 27th, 2019.

At the Dalian oil terminals GPS interference appears to have begun in late June 2019. It is possible that this was a reaction to increased scrutiny of crude imports after the U.S. ended exemptions for purchase of Iranian oil on May 2nd. In fact, Dalian is the headquarters of two subsidiaries of Cosco shipping which were sanctioned on September 25 for importing Iranian crude. Based on what can be seen with vessel activity in Dalian, it is clear that GPS interference is not able to entirely mask vessels approaching the terminal. However, it likely would make it impossible to reliably link a vessel’s AIS track with satellite imagery of a vessel discharging crude at dock. While it is not at all clear that GPS interference was intended to obscure shipping activity, we do see that it had a significant impact on AIS tracking and that the interference was specifically concentrated at oil terminals.

In the November article first documenting the strange GPS anomaly in Shanghai, the question was posed whether this was the work of the Chinese state or some other actor like a mafia engaged in smuggling river sand. Based on the very specific characteristics of the GPS manipulation observed and its deployment at high level installations, it seems very likely that the Chinese state is responsible. It remains to be seen whether this is simply a security measure or if GPS manipulation is also being deployed specifically to prevent monitoring of oil imports.

Christian Thomas Works to Protect his Home State of West Virginia

Christian had a choice: The Peace Corps or SkyTruth.  He chose SkyTruth.

“It was no contest,” Christian Thomas told me when I asked him about choosing between the Peace Corps and SkyTruth. Born and raised near Shepherdstown, West Virginia, Christian first met SkyTruth President John Amos at the Shepherdstown Farmer’s Market when he was a student at West Virginia University (WVU). Every Sunday morning in the summertime, Christian helped a local farmer tend a stand that sold meat and eggs to community foodies. When John learned that Christian was studying geography and environmental geoscience, he encouraged Christian to send his resume to SkyTruth.

But it took Christian a while to get around to that. First, he graduated from WVU in the spring of 2014. Then he worked as a cook at Camp Arcadia on the shores of Lake Michigan; a favorite family summer destination when he was a kid. After returning to West Virginia in the winter of 2015, he began volunteering at SkyTruth and soon became a part-time employee.

Then the offer from the Peace Corps arrived, giving him the opportunity to work in Ethiopia for two years as an Environmental Extension and Forestry Volunteer. Offer in hand, Christian asked John if SkyTruth would be interested in hiring him full time. Sure enough, SkyTruth made him a counteroffer. “[SkyTruth] was a direct application of everything I had studied,” Christian told me. And one of his first projects at SkyTruth focused on mining: “things I could see and have impact on,” he said. He jumped at the chance for a full-time position.

“One of my favorite things about SkyTruth is creating data that never existed before,” he said. He pointed to how much he values having his data used by researchers, universities, and other partners to generate scientifically credible results that can influence policy, thereby having real impact on the ground.

Christian leads SkyTruth’s work on mountaintop mining; a common practice in Appalachia in which mining companies blow up entire mountaintops to get at the coal hidden inside, then dump the soil, rock, and other material into valleys and streams below. This practice destroys native ecosystems and can poison the water supply. “West Virginia is beautiful. By not destroying the landscape there are more benefits for the state,” Christian believes.

SkyTruth’s Central Appalachia Surface Mining dataset shows where mining has occurred across 74 counties in the states of Kentucky, Tennessee, Virginia and West Virginia since 1985. University researchers have used SkyTruth’s data to examine health impacts on nearby communities and conservation groups such as Appalachian Voices have used this data to mobilize activists. Most recently, scientists at West Virginia University published a study in the peer reviewed International Journal of Environmental Research and Public Health that relied on this dataset to document an association between mining and dementia-related deaths.

“There aren’t a lot of [job] opportunities for West Virginians and what there is often hurts them,” according to Christian. As coal production declines, Christian believes there are better ways for West Virginians to make a living that don’t harm people’s health. “[The beauty] is still there, but we don’t want to lose more,” he said. Some mines are massive, he pointed out — hundreds of acres. “You can see them march across the landscape in the course of a decade.” Christian has seen this firsthand by analyzing countless satellite images. One of the first steps in stopping the process, he believes, is showing how destructive these mines are.

Christian mountain biking in Oregon. Photo by Joe Milbrath.

His next step is looking at reclaimed mine sites. “You can never put the mountains back,” he said. Once mined, the Mountain State’s mountains are gone forever. But he hopes that some previously mined sites can support a native Appalachian forest again if they are reclaimed effectively. “We’re going to quantify how well the land can recover, or has recovered,” he said. This is critical information for taxpayers: Under federal law, mining companies are required to reclaim sites after they are done mining, plus set aside money in bonds to cover reclamation costs. If the mining company convinces state inspectors that recovery is sufficient, they get their bond money back. But if bonds are released for poorly reclaimed sites, communities and taxpayers can be left with denuded landscapes and large restoration bills. Christian wants to know whether real restoration is actually occurring.

His other project work at SkyTruth includes mapping offshore infrastructure in the oceans to help SkyTruth monitor ocean pollution and its partner Global Fishing Watch track fishing vessels. In November 2019, the journal Remote Sensing of Environment published his ocean infrastructure work with coauthors Brian Wong and Patrick Halprin from Duke University’s Marine Geospatial Ecology Lab.

When not saving his beloved West Virginia (or the world’s oceans), Christian spends time outdoors with his partner Amy Moore, whom he’s known since childhood. Amy is lead instructor at the Potomac Valley Audubon Society’s Cool Spring Preserve, and is what Christian calls “an extremely adventurous person,” big into rock climbing, cross country skiing, and white water kayaking. Christian prefers mountain biking, board games, and fly fishing – a family tradition handed down from his mother. But they both enjoy hiking at the nature preserve and, with their shared interest in conservation, make a difference every day in West Virginia.

Christian and Amy at Temperance River State Park, MN . Photo by an anonymous passerby.

Updated 12/5/19.