The SkyTruther path: an intern’s excursion to understanding offshore oil (part I)

Practice does not guarantee perfection but it is a diligent educator. During my first week of orientation at SkyTruth, the other interns and I filtered through Sentinel 1 radar satellite imagery on the European Space Agency’s (ESA) online portal, compressed large .tiff image files using the command-line, and constructed final, publishable visuals in QGIS – a free, open source geographic information system (GIS), enabling users to create, view, edit, and analyze geospatial data. Essentially, we learned the fundamentals of finding, processing, and analyzing imagery.

Subsequent to grasping the basics, I worked on catching my first ocean offender by clicking through images, zooming in and out of rasters, and adjusting min and max values. Eventually, I spotted several shadowy slithers. Possible identification: oil leak.

Oil slicks off the coast of China.

The first image I discovered at SkyTruth.

Before hopscotching to conclusions, I checked in with mentor, Dr. Ry Covington (Doctorate of Philosophy; he’s not the medical type but he knows a thing about bodies – bodies of water, that is). Without hesitation, Ry confirmed my sighting as plausible. Three likely slicks from three unidentified sources. Mission success, phase two initiated: annotate.

When annotating an image, there are certain guidelines to follow. Most of the metadata – basic information needed to read a visual such as image credit/source, author, scale-bar, and date – is there. However, I did not include any boxed nouns or pointy things denoting the white zit-like points, or running, dark mascara streaks. Reflecting, I should have marked up this version more; I should have labeled the several pimples as unidentified sources, and measured the length of the eyelash-lacquer lines, ticketing them as slicks. Instead, I let the caption clamor over the image.

My first caption went something like this: “This image displays three leaks from several unidentified sources, off the coast of Guangzhou Province, China (near Hong Kong).”

That was all I got. New to the practice in general and unfamiliar with that latitude, I didn’t have much to say. So to boost productivity, I harvested a separate, bluer pair of eyes. My advisor with three first names, Christian James Thomas, looked over my caption. He was particularly picky with diction. One word, to be precise: leaks. Backspacing five times, Christian typed ‘slick’. Slick? Like ‘smooth’ or ‘glossy’? Or maybe like Eric Slick, the drummer of my favorite band, Dr. Dog? I wish, but certainly not.

‘Slick’ has various definitions, but to the SkyTruth team, slick typically describes flat water. Smooth surfaces on satellite radar imagery could signify oil, algae, lack of wind, or the like. What we are interested in is the accidental or purposeful release of oil or oily waste that may be a result of drilling, disposal, or disaster. Leak or spill is too specific, too assuming. I learned why this was after confusing slicks with a number of other ocean junk. When examining satellite evidence, slicks are often muddled by air and ocean current due to lag time between spill and image capture – this phenomenon also contributes to why some slicks exist without suspect in sight. Other times, slicks can be confused with false positives from weather events, natural disasters, coastal features, natural seeps, and other anomalies.

Bilge dumps off the coast of China.

This figure displays two likely slicks from intersecting bilge dumps off the coast of China. Due to their kinky shapes, these slicks are likely several days old; this image also shows the influence of time and natural forces on slick appearance.

Although I discovered how to be more transparent with terminology and make better imagery-based speculations, I did not know enough about slicks themselves. Oil naturally exists in the earth, and we harvest it to power our consumptive, energetic lifestyles. Sometimes, the oil itself leaks. In other other cases, wastewater produced during offshore drilling processes is released by us. This produced water is known as brine. Brine contains inorganic substances, toxic matter, and variably sized oil particles that must be properly disposed of or treated before release; it can be treated on platform and discharged into open water, transported to an offsite facility treatment or disposal facility, or put into beneficial reuse – for irrigation, recycled flowback fluid for other drilling operations, or as a substance for ice control (“Produced Water 101”, 2017).

Unlike shoplifting or arson, oil slicks are not always a result of unlawfulness. Some slicks are consequences of legal dumping – legality depending on individual cases in regard to international and country approvals. Accidental spills and leaks also occur and must be cleaned up. However, not all slicks are legally permitted or accidental and concern arises when oil slicks appear without record. Bilge dumping is one indicator of purposeful, often illegal, offshore pollution. To relieve ship weight and space, ships release oily waste from their engine and fuel systems, flushing residual material out of their cargo holds. This is highly illegal, as noted by a case in 2016, when Caribbean Princess, a luxury cruise ship under Princess Cruises, was fined $40 million for illegally discharging thousands of gallons of bilge. Senior intern, Daniel Nicholls, spotted a similar incident with another Princess Cruises ship in late January, indicating an ongoing dilemma.

A bilge dump from the Sapphire Princess.

Nicholls’s annotated Sentinel 1 radar satellite image of possible bilge dumping by Caribbean Princess-owned cruise ship, Sapphire Princess, as it heads towards Kuala Lumpur, Malaysia. Check out the full post here.

Now, I understand slicks not just as mascara tears or eyeliner blunders across a wrinkled ocean display; but as oily remnants with purpose and disposition. This comprehension allows me to more appropriately identify and interpret oil slicks in marine environments. As valuable as this was process and realization was, I registered that the beluga colored specks, aka the potential sources of the slicks, were still unidentified. Probably boats….

Who’s to blame? The murky dilemma of oil spill accountability

As global energy consumption continues to grow, Trinidad and Tobago — a small, Caribbean nation rich in oil and gas resources — has become one of the top exporters of liquified natural gas (LNG) in the world.  But the benefits to the economy of Trinidad and Tobago have come with a cost: chronic leaks and spills from aging oil and gas infrastructure on and offshore.

In early July, an abandoned oil well off of the west coast of Trinidad ruptured, sending dangerous hydrocarbons spewing into the ocean.  Trinidad and Tobago’s state-owned oil company Petrotrin stepped in to help address the rupture, but six days after the orphaned well erupted, the Ministry of Energy was still trying to determine which private company was responsible.

Insufficient documentation and incomplete record-keeping makes response efforts more difficult.  Gary Aboud, Corporate Secretary of Trinidad and Tobago’s Fishermen and Friends of the Sea (FFOS), summed up the the deeper issue in Trinidad concisely: Who is the responsible party? Nothing has been done all week…There are literally hundreds of decades-old, capped, orphaned or abandoned wells which may not have been properly decommissioned, and are corroding.”

Map of Trinidad and Tobago's energy resources.

Energy map of Trinidad and Tobago. Source: The National Gas Company of Trinidad and Tobago.

Better documentation about ownership and better geospatial data showing oil and gas fields, pipelines, and abandoned wells would be a step in the right direction.  Some of this information is available but, as the map above shows, much of it is in a form that is very difficult to use. This energy map is pretty ‘busy’ — the various oil fields, gas fields, and pipelines depicted together make it difficult to use, especially in a crisis scenario like responding to an oil spill.

Officials need a comprehensive geospatial data set — filled with attributes like ownership or responsible party — that they can easily examine, especially during crises like this one.  One of my tasks as an intern at SkyTruth has been to pick apart the existing information (including the map above) and provide it as a robust geospatial data set that’s easy for the public to use.

A map of Trinidad and Tobago's gas fields and gas pipelines.

Gas fields and gas pipelines in Trinidad and Tobago, digitized from the map above.

I’ve digitized all of the oil and gas fields, pipelines, and existing platforms around Trinidad and Tobago, and I’m constantly adding in new fields and data that I’m collecting about these features.

Map of Trinidad and Tobago's oil fields and oil pipelines.

Oil fields and oil pipelines in Trinidad and Tobago, digitized from the map above.

I’m using these new data sets — combined with Sentinel 1 radar satellite imagery — to help monitor oil leaks and spills around Trinidad and Tobago like the one described above.  Having better geospatial data will improve not only how companies handle clean-ups, but will also provide local fisherfolk with more insight into leaks and spills from oil infrastructure as they happen.

Global Fishing Watch Provides Training to Peru’s Vessel Surveillance Group

[Originally posted on the Global Fishing Watch blog, Aug. 15, 2018.]

We were very pleased to complete a three day training session this month in Lima with the Peruvian Ministry of Production’s vessel surveillance division. It was an opportunity for us to share the latest developments on the Global Fishing Watch mapping platform and to get expert feedback from professionals in Peru’s fisheries sector.

Since Peru’s public commitment in 2017 to show fishing activity from their Vessel Monitoring System (VMS) tracking data on our map we have engaged with local researchers and regulators to review and improve our data and analysis in the region. This began with a workshop with Peru’s Instituto del Mar de Peru (IMARPE) last December and now continues with Peruvian regulators directly responsible for daily monitoring of one of the world’s largest fisheries (Peruvian anchoveta).

In our most recent training session we highlighted the benefits of being able to view and compare multiple data sources on the Global Fishing Watch map including the new night lights and encounters layers launched in June this year. Many large fishing vessels on the Peruvian coast are covered both by AIS and the Peruvian VMS system. In training, we compared the tracking data from both systems for the same vessel showing how one system may cover a gap in the other.

The new night lights layer also has the potential to be very useful to regulators in combination with tracking data. A fleet of hundreds of Chinese vessels fishing for squid is expected to soon return to the Peruvian EEZ boundary. Individual fishing locations can be seen precisely due to the powerful lights they use to attract squid to the surface. However, to identify the fishing vessels, the night light information has to be combined with tracking and identity information from AIS. In training we identified a number of vessels in the Chinese squid fleet and followed their AIS tracks into port in Peru or to rendezvous with reefers (refrigerated cargo ships) where their catch is likely being transshipped.

As we work to develop new tools and data sources for the Global Fishing Watch map it’s valuable to get the insights of fisheries regulators on how they would like to be able to apply our map. So it was great to be able to wrap up the training with a discussion on features that it would be useful to enable in the future. These included being able to select an area on the map with the mouse and display a list of vessels inside and downloading reports of past activity for individual vessels as they come into port.

A special thanks to José Luis Herrera and Nilton Yarmas for coordinating the training. We also benefited greatly from the assistance of Eloy Aroni Sulca of Oceana’s Lima office who demonstrated many interesting potential applications of Global Fishing Watch in Peru. We look forward to hearing more in the future from participants in our training course and collaborating with them for successful monitoring and management of Peru’s ocean resources.

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Signs of oil from the SSL Kolkata

Followers of our work will recall the merchant vessel SSL Kolkata that was being towed by the Indian Navy after catching fire on June 13th off the Sundarbans in the Bay of Bengal.  The Indian Navy had to abandon the ship after a series of explosions and it has been stuck in shallow water ever since. There have been concerns that the 400 tonnes of heavy fuel oil might start leaking as the ship is listing and cracks are developing. The Sundarbans are the world’s largest collection of mangrove forests and a Unesco World Heritage site (https://whc.unesco.org/en/list/452), and a major oil spill here could be devastating. We see indications in this Sentinel 1 radar satellite image from July 17 that this is a legitimate concern: there appears to be a 17km slick coming from the vessel, being pushed by the strong currents from the Ganges Delta.

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Sentinel 1 imagery showing a slick visible with Synthetic Aperture Radar that appears to be emanating from the stricken vessel on July 17.

Considering the volume of oil onboard, the slick on July 17 is far smaller than what we would expect if there were a serious leak. This Sentinel 2 multispectral image from the 19th has also captured the slick. Though it doesn’t give us a complete image of the slick as a radar image would (due to interference from the clouds and cloud shadows), we do get an idea of how the slick is spreading not just south, but also north toward the Delta.

Oil slicks seen in Sentinel 2 imagery taken two days later on July 19.

Oil slicks seen in Sentinel 2 imagery taken two days later on July 19.

Attempts have been made to salvage the ship but were abandoned after cracks developed and the ship started listing. Now that the fuel tank is underwater, they will need to suck the oil out carefully using a method known as “hot tapping.” Although poor weather has delayed these plans, we have observed one tugboat, the Lewek Harrier, visiting the site as recently as the 19th according to its Automatic Identification System (AIS) signal. Though we couldn’t definitively identify the vessel visible in this image at the time it was collected, the Lewek Harrier was the only vessel that was broadcasting AIS in the area on that day. The MCS Elly II has also been operating in the area though we haven’t seen it in any images.

[ Image 3 ]
This vigilant tug, the Lewek Harrier, has been a regular visitor.

This vigilant tug, the Lewek Harrier, has been a regular visitor.

We hope this means an end to this leak and that the extent of the spill will be limited. We will continue to watch this area closely as there is still a real threat to the nearby Sundarbans.

You can find more info on the cleanup here. 

You can find more info from when the containers began slipping off the ship here

Rockwool — Industry comes to SkyTruth’s backyard

Rockwool, a multinational corporation based in Denmark, is planning to build a new insulation manufacturing plant in Jefferson County, West Virginia, 5 miles from SkyTruth’s front door. If built, the plant will feature a 21-story (~210 feet) tall smokestack that will spew chemicals including formaldehyde, sulfuric acid mist, and hydrochloric acid.  For the full list of pollutants they plan to emit, see page 428 of the Roxul application submitted to the WV DEP on Nov 20, 2017.

This PlanetScope image shows the locations of the four schools located within three miles of the Rockwool site, along with the route of the proposed Mountaineer Pipeline.

The concerns over this predicted air pollution from the Rockwool facility are compounded by its location. Four schools are within 3 miles of the site (the site here is defined by the latitude and longitude provided by this WV DEP report, see page 1): two elementary schools, one middle school, and one high school. The closest of these is North Jefferson Elementary School, which is located a mere 3,400 feet from the Rockwool site as shown in the WV DEP permit application.

This wind rose (generated by The Global Wind Atlas) shows the prevailing wind directions for the area near the Rockwool facility.

This wind rose (generated using data from a weather station at the Eastern West Virginia Regional Airport) shows the prevailing wind directions for the area near the Rockwool facility from 2012-2016. This wind rose was included in the Air Modeling Report submitted by Roxul to the WV DEP (see page 30).

To read these wind roses, the outer edge indicates the direction from which the wind blows. With the dominant wind direction from the northwest, all four of the schools will typically be downwind from this facility, frequently exposing students, faculty and staff to the pollutants Rockwool says they plan to emit.

Last August, SkyTruth worked with the Eastern Panhandle Protectors to produce a map of the Mountaineer Pipeline Eastern Panhandle Expansion.  What’s the connection? As it turns out, natural gas delivered via this pipeline will feed the Rockwool plant.  One thing leads to another….

This PlanetScope image, collected on August 6, 2018, of the Rockwool site shows recent construction activity. Less than a mile from the site is the North Jefferson Elementary School.

The concerned citizens of Jefferson County are making their voices heard, and are actively opposing the final permits and approvals needed for construction of the Rockwool facility. As a nonprofit that makes its home in West Virginia, SkyTruth is pleased to offer access to our maps (including an interactive web map, which will be updated as we learn more), to the citizens of Jefferson County, in the hopes that these resources will help raise awareness and engage the community on this potentially serious public health issue.