Global Flaring Map Reset

The wasteful practice of flaring off natural gas from oil and gas fields is again making news, coinciding with a new release of SkyTruth’s Global Flaring Map that visualizes gas flaring activity around the globe. This map relies on the Nightfire data provided by NOAA’s Earth Observation Group, which has written extensively about their work detecting and characterizing sub-pixel hot sources using multispectral data collected globally, each night, by the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi-NPP satellite. Read about the algorithm that creates Nightfire data here and methods for estimating flared gas volumes here.

SkyTruth’s enhanced map has these added features:

  • NOAA has published two additional years of flaring data, allowing our map to extend back to March, 2012.
  • A location search box lets you go directly to a city, state, country, landmark, etc.
  • Date range selection helps you limit the visualization to the time-frame you’re interested in.
  • You can identify your own rectangular Area of Interest and download flaring data within that AOI (works best in Chrome browsers).
  • We’ve caught up with NOAA’s daily download after adjusting to recent changes in their web security.


About our Global Flaring Map

Please read about some of the uses for this map and how SkyTruth processes NOAA’s data in this original post describing our map. If you don’t see a flaring detection you expected to see, consider the caveats:  some flares don’t burn hot enough to be included in our dataset, they may not have been burning when the satellite passed overhead, the flare may not be frequent enough to make it past the 3 detection threshold, heavy clouds may have obscured the flare from the sensor, etc.

If you find this map useful, drop us an email at info@skytruth.org to let us know.

Why Flaring is Again in the News

In November 2016 the Interior Department announced a new Methane and Waste Prevention Rule to reduce wasteful flaring and leaks of natural gas from oil and gas operations on public and Indian lands. Although Congress tried repealing the rule after the 2016 elections, that effort failed to advance out of the Senate after a May, 2017 vote.

Despite the Senate’s action to keep the methane rule, the Environmental Protection Agency just announced (as of 6/15/2017) they would suspend implementation of the rule for 90 days — an action that leading environmental groups claim is unlawful.

Bilge Dumping Proving to be a Persistent Issue for the UAE

15 kilometers (about 9 miles), off the coast of Fujairah and Khor Fakkan in the United Arab Emirates is a popular tanker parking lot.

Tankers anchored offshore of Fujairah and Khor Fakkan in the UAE.

There is no issue with this, until you consider the fact that it appears to be the cause of persistent pollution problems for the UAE. There have been 4 spills in the past 3 months and local communities are getting fed up as these spills impact both local businesses and the environment.
This image, collected on May 24, by the European Space Agency’s Sentinel 2 satellite shows the Nordic Jupiter, one vessel which was anchored offshore as well as oil slicks visible on the surface of the water. While we don’t know if the Nordic Jupiter is the source of this slick, it seems likely based on this image.

The Nordic Jupiter and oil slicks off the coast of the UAE.

Occasional overflights by enforcement agents would be more than sufficient to police this parking lot, to deter future dumping, and to catch violators.

More Oil Spotted at the Taylor Energy Site

We posted about a slick emanating from the Taylor Energy site on April 28th. And surprise, surprise a mere 12 days later, what should we see but yet another slick.

In 2008 Taylor Energy set aside over $600 million to pay for work related to the chronic leak that we have covered extensively since it came to our attention in 2010. As you can see in this image collected by the European Space Agency’s Sentinel 2 satellite, as well as in numerous other images we have collected, their work to date doesn’t seem to have stemmed the leak.

Sentinel 2 image collected of the Taylor Energy Site on May 8, 2017.

Which begs the question: why is Taylor suing the government to return the $432 million remaining in trust? That money was set aside for work that is yet to be finished. Why would they think they have earned it back?

Radar Imagery Shows Possible Slick From Oil Platform Off Peru’s Coast

Traditional sail powered fishing craft below Oil Platform 10 on the Peruvian north coast.

Last month we learned of an oil slick that had been sighted off the north coast of Peru in proximity to a number of offshore platforms. The slick was first observed by local fishermen in January and was reported in the pressAt the time SAVIA Perú, which operates platforms in the area, stated that they had inspected their facilities and were not responsible for the leak.

We’ve now had a look at Sentinel-1 satellite radar imagery of the area over the past few months. This imagery, provided by the European Space Agency, does show a possible oil slick extending about 14 miles from one offshore platform on February 3rd. Imagery from the weeks before and after the reported slick may also show some evidence of chronic leaks in the area. 

While initial reports in the press named Platform 10 in the area as the likely source, the imagery shows a possible slick extending from a different platform, Peña Negra TT (PNGR TT), also operated by SAVIA as part of lot Z-2B. A dive support vessel Urubamba is also seen alongside another platform further south (PNGR BB) indicating there may be ongoing maintenance on oil infrastructure in the region.

Sentinel-1 imagery from Feb 3, 2017 showing a possible oil slick extending from a platform on the Cabo Blanco area of Peru’s north coast. Image courtesy of European Space Agency.

Two additional Sentinel-1 images are below, from March 11, 2017 and April 16, 2017.  On March 11th we again see a possible oil slick extending south 1.8 miles from platform PNGR TT. However other larger dark patches also appear on this image making it difficult to interpret. These patches are areas of relatively flat water which could result from a sheen of oil on the water’s surface but could also be from other causes such as blooms of phytoplankton or even an area of heavy rainfall. Recent imagery from April 16th shows no indication of any oil slicks in the area.

Sentinel-1 imagery from March 11, 2017 again showing a possible slick extending south from well PNGR TT. Large dark patches to the west indicate areas of still water. Image of courtesy European Space Agency.

Sentinel-1 imagery from April 16, 2017 shows no indication of possible oil slicks in the area. Image courtesy of European Space Agency.

Along with extensive oil infrastructure, this area has the highest marine biodiversity on Peru’s coast and for that reason has been proposed as part of a new marine protected area. Under proposed legislation oil companies operating in the area could continue provided they complied with environmental regulations. We can’t be certain who was responsible for the oil washing ashore a few months ago but as this imagery shows there is reason for concern regarding this particular platform (PNGR TT) and continued monitoring of oil platforms in this area will be essential if this unique environment is going to be protected.

 

 

 

Imágenes de radar muestran posible derrame de petróleo proveniente de una plataforma de la costa norte del Perú

29 de abril 2017 / por Bjorn Bergman

Tradicionales embarcaciones pesqueras con velas pasan por debajo de la plataforma petrolera 10 en la costa norte de Perú.

El mes pasado nos enteramos de un derrame de petróleo que fue visto en la área de Cabo Blanco en la costa norte de Perú en proximidad a unas plataformas petroleras. El derrame fue observado por primera vez por unos pescadores locales en enero y se informó a la prensa. A el momento SAVIA Perú, que opera plataformas en el área, declaró que habían inspeccionado sus instalaciones y no eran responsables por la fuga.

Ahora hemos examinado imágenes del radar satelital Sentinel-1 durante los últimos meses. La imágen del 3 de febrero, proporcionada por la Agencia Espacial Europea, muestra un posible derrame de petróleo que se extiende a unos 22 kilómetros de una plataforma petrolera. Las imágenes de las semanas anteriores y posteriores a esta fecha también pueden mostrar alguna evidencia de fugas crónicas en el área.

Mientras que los reportes iniciales en la prensa nombraron una Plataforma 10 como la fuente probable, estas imágenes muestran un posible derrame que se extiende desde una plataforma diferente, Peña Negra TT (PNGR TT) también operada por SAVIA como parte del lote Z-2B. También se observó un buque de apoyo de buceo, DSV Urubamba,  junto a otra plataforma más al sur (PNGR BB) lo que podría indicar que se realiza  mantenimiento en la infraestructura petrolera de la región.

Imagen del Sentinel-1 de 3 de febrero 2017 mostrando un posible derrame que se extiende de una plataforma en la área de Cabo Blanco en la costa norte del Perú. Imagen cortesía de la Agencia Espacial Europea.

Dos adicionales imagenes Sentinel-1 están por debajo, del 11 de marzo y del 16 de abril de 2017. En el 11 de marzo volvemos a ver un posible derrame que se extiende 3 kilómetros de la plataforma PNGR TT pero debido a la presencia de unas manchas oscuras más grandes al oeste se torna difícil interpretar lo que aparece en la imagen. Estas manchas oscuras son áreas de agua relativamente plana que podría ser el resultado de la presencia de petróleo en la superficie del agua, pero tambien podria ser de otras causas, como las floraciones de fitoplancton o incluso lluvias fuertes. Un imagen reciente del 16 de abril no indica ningún posible derrame de petróleo en la zona.

Imagen del Sentinel-1 del 11 de marzo de 2017 que otra vez muestra un posible derrame de petróleo que se extiende al sur de la plataforma PNGR TT. Las grandes manchas oscuras al oeste indican áreas de agua mas calmada. Imagen cortesía de la Agencia Espacial Europea.

Imagen de Sentinel-1 de 16 de abril de 2017 que no muestra indicaciones de petróleo en la agua. Imagen cortesía de la Agencia Espacial Europea.

Junto con una extensa infraestructura petrolera, esta área tiene la mayor biodiversidad marina en la costa peruana y por eso se ha propuesto como parte de una nueva área marina protegida. Según la legislación propuesta, las compañías petroleras que operan en la zona podrían continuar siempre que cumplieran con las regulaciones ambientales. No podemos estar seguros de quién fue responsable por el petróleo que llegó a la playa de Cabo Blanco hace unos meses, pero con estas imágenes se puede mostrar que hay motivo de preocupación por una plataforma en particular (PNGR TT) y que el monitoreo continuo de plataformas de petróleo en esta área sería esencial si este ambiente único va a estar protegido.

More Offshore Drilling to Come?

Once again, the federal government is proposing that we expand offshore drilling to new areas in US waters.  Today, President Trump signed an executive order directing the Department of the Interior, which manages our public lands and waters, to review the Obama administration rule that deferred oil and gas leasing along the Atlantic coast and in the Arctic Ocean off Alaska.  People who could be affected by new drilling in those areas should consider that it’s not just the risk of the occasional major disaster they would be facing; it’s the chronic, day-to-day pollution accompanying offshore oil development that is systematically under-reported by industry and the government, the “death by 1,000 cuts” that is so easy to ignore.

Case in point: check out last night’s slick at the site of the chronic Taylor Energy oil spill in the Gulf:

Sentinel-1 radar satellite image showing oil slick caused by a chronic leak of oil from the seafloor at the Taylor Energy site, where an oil platform was destroyed by a hurricane in 2004.  Image acquired 4/27/2017 at about 7pm local time.

This Sentinel-1 image taken on April 27, 2017 shows an oil slick covering an area of 45.5 square kilometers (km2). Our calculations assume that oil slicks observable on satellite imagery have an average thickness of at least 1 micron (one millionth of a meter), so each km2 contains at least 264 gallons of oil. Multiply that by the area of 45.5 km2 and the Taylor slick shown in this image contains at least 12,012 gallons of oil.

This site has been leaking oil continuously into the Gulf since Hurricane Ivan came through and knocked over the Taylor Energy oil platform in September.  That’s September, 2004.  You can review the history of this site and see the hundreds of spill reports received and tracked on our Taylor Chronology page here. Until something is done to stop this leak, we’ll continue to monitor the site and keep you informed.

A Closeup Look at Leasing and Drilling: Allegheny County, Pennsylvania

Up to this point, Allegheny County in southwestern Pennsylvania has been mostly spared from much of the fracking boom spanning that state. This may change however, as oil and gas companies have been systematically leasing property around the county for potential drilling.  Usually it’s hard to get a handle on the magnitude of this threat, since leases on private property are generally difficult to discover.  Fortunately for the public (us included), our friends at FracTracker Alliance built the Allegheny Lease Mapping Project: an interactive online map showing land parcels leased or contracted to oil and gas companies.  Individual parcels of land that have been tied to oil and gas records can be selected to pull up a variety of information about that parcel.  Users can explore the map to see where a parcel of leased land is located relative to homes, schools, bodies of water, parks, and other sites of interest. This tool is meant to help citizens, communities and policymakers make informed decisions about zoning, land use, and future oil and gas development in the region. 

We thought it would be useful for folks to see where all the oil and gas leases are in the county, relative to the Marcellus Shale gas drilling and fracking that has already happened.  FracTracker graciously provided their dataset, and we filtered it to only show parcels tied to an “active” lease.  Here is the result.  Properties with an active lease are displayed in green. Those that have experienced some drilling activity since the Marcellus boom began a decade ago, are shown in red:

Active leases (green) in Allegheny County, PA. Active leases that have experienced some drilling activity since 2005 shown in red. Click to enlarge.

Though much of Pennsylvania that overlies the Marcellus Shale has seen extensive fracking development, most of Allegheny County hasn’t yet had any of this modern drilling with hydraulic fracturing. But the large area under lease should give residents throughout Allegheny County some concern:  a significant amount of drilling could be in their future, and drilling sites could be built uncomfortably close to where people live and work. The average size of a well pad is 3-5 acres, potentially bigger than a football field or even the deck of an aircraft carrier. In this illustration, hypothetical well pads and access roads (shown in yellow) are placed over existing leases in the northeastern portion of Allegheny County that have not yet been drilled (orange). Many of the leases come close to, or overlap with, existing residential areas:

A portion of northeastern Allegheny County showing active oil and gas leases in orange that have not yet been drilled, in an area of mixed residential, forest, and agricultural land use. Hypothetical drilling sites (“well pads”) and access roads are shown in yellow. Click to enlarge.

 

Detail from above, showing potential proximity of large industrial drilling sites to homes and a school. Click to enlarge.

In the close up above, we see that a potential well pad of typical size dwarfs the high school and football field only 1200 ft away. During drilling the neighborhoods nearby would have to cope with health, safety and lifestyle impacts associated with round-the-clock noise, heavy truck traffic, and degraded air quality, in addition to the longer-term potential for surface and ground water contamination caused by accidental leaks and spills.

It’s our hope that by making this hard-to-access leasing data easily available, folks in Allegheny County will be enabled and inspired to take action to protect their communities.  A big tip ‘o the hat to FracTracker for building and sharing the lease dataset.

Fracking: Coming to a Backyard Near You?

Last summer one of our interns, Jerrilyn Goldberg, put together an interactive story map detailing the impact hydraulic fracturing is having on the state of Pennsylvania. The map goes describes the fracking process and its associated risks, and how the growing industry is impacting local communities and the environment. She examines the proposition that switching to a natural gas dominated energy system would mitigate global warming, an important thing to consider when discussing future energy development. You can check out the story map by clicking the image below:

When thinking about fracking and its potential costs and benefits to society, it’s important to remember the impact it will have on the people living near it, not just the country as a whole. The industry touts the amount of potential energy that can be gained from a fracking well relative to its “small” footprint as a major advantage of the process over conventional gas wells and coal extraction. Wells can be permitted and drilled quickly, and with horizontal drilling a single well has access to a large area of potential gas reserves. This also means that wells can pop up at an alarming rate and fit into places that are uncomfortably close to where people live and work. Often times, these wells and their associated infrastructure are within sight and earshot of people’s homes, or even schools, hospitals, and other sensitive areas where people’s health can be put at risk by the 24/7 noise, lighting, diesel fumes, dust, and volatile chemicals emanating from typical drilling sites:

Here in western Pennsylvania we see how close fracking operations can come to people’s homes; the people living in the cluster of houses on the left have to live with the commotion around the well pads a stone’s throw away on a daily basis, and the massive fluid retainment ponds in blue could pose a threat to their health. Click on the image for a fullscreen version.

 

The story in West Virginia is very similar. Here a fracking well pad is less than a football field away from someone’s home. Click on the image for a fullscreen version.

Often times, many of the people that will be affected by a new fracking operation have little to no say in the matter. People are typically powerless to stop construction of a drilling site on a neighboring property, and don’t have any say in where and how the site and associated roads and utilities get built, even though they will still have to deal with the increased noise, light, and traffic, as well as decreased air quality. Health concerns are a major issue because fumes and volatile organic compounds (VOC’s) originating from well pads and fluid retainment ponds have been linked to respiratory and skin illnesses. Fracking operations have also been known to contaminate people’s drinking water by causing methane migration, posing an explosion hazard, and fracking fluids that have made it into the water table can render water unsafe for drinking, bathing, and even laundry. Accidents like fluid spills and well blowouts are an ever-present threat, with the potential to send thousands of gallons of fracking fluid spewing into the air and onto the surrounding landscape, as happened to a well in Clearfield County, Pennsylvania in 2010 that resulted in more than 35,000 gallons of fracturing fluid contaminating the environment. Local campers had to be evacuated from the area. 

Hydraulic fracturing has really taken off in the last decade thanks to horizontal drilling technology. Here, in this section of southwestern Pennsylvania, we can see how rapidly fracking operations have expanded near the Pittsburgh area. The colored dots show the locations of new drilling sites similar to the ones shown in the images above, identified with help from our FrackFinder volunteers.

Because of its location over a particularly rich part of the Marcellus Shale, Pennsylvania has been one of the states most heavily impacted by the fracking boom, but fracking has begun to take off in other states as well. These include Ohio and West Virginia, where along with Pennsylvania you’ve helped us investigate and map drilling activity through our FrackFinder project to quantify the growing impact of fracking in each state, and make the data available to the public and to researchers investigating the impact of fracking on public health and the environment.

Ohio sits partially atop the Utica shale. This map shows the locations of well pads built between 2010 and 2013 in a small part of the eastern portion of the state, and the access roads that were carved out to support them. Click on the image for a fullscreen version.

 

Fracking is relatively new to West Virginia, and the topography is rugged (as shown by this shaded-relief map), so well pads aren’t yet spaced as densely as they are in states like Pennsylvania. The red polygons represent well pad construction, and the dark blue represent retainment ponds. Click on the image for a fullscreen version.

If you’d like to learn more about fracking and how it impacts people and the environment, be sure to check out Jerrilyn’s story map for an in-depth look!