Persistent Oil Leak in Australian Waters Now Disclosed One Year After It Occured

Last week the Guardian reported on an oil spill on Australia’s North West Shelf that was detected in April 2016 but had not been made public until a performance report was recently issued by Australia’s National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA). Despite the spill being estimated to have gone on for two months and released 10,500 liters of oil the Guardian reports that NOPSEMA declined to reveal exactly where the spill had occurred or which company was responsible.

Woodside’s FPSO OKHA

We had a look at operations currently in the area and identified a vessel which fits the description in the article. This is the FPSO OKHA operated by Woodside Energy. Our identification has now been confirmed as Woodside has admitted responsibility and the OKHA has been named as operating at the site.

Though this is being reported as the largest offshore leak in Australian waters last year Woodside states that the spill had no lasting impact on the environment.

On April 15, 2016 two likely response vessels appeared at the leak site. To the west is the dive support vessel Seven Eagle. About 900 meters to the east is the Nor Australis, an offshore supply vessel equipped with a ROV for underwater surveying.

We have examined imagery of the site from April 15th of last year, that is shortly before the OKHA returned to this location and around the time the leak was apparently first detected. Two response vessels appear at the leak site. The Nor Australis is an offshore supply ship equipped with a ROV which probably detected the leak. The dive support vessel Seven Eagle is a short distance to the west. We don’t see any signs of a slick in this image or in several others we checked. However it is still of concern that the report of an incident like this would be kept from the public for more than a year.

 

 

More Oil Spotted at the Taylor Energy Site

We posted about a slick emanating from the Taylor Energy site on April 28th. And surprise, surprise a mere 12 days later, what should we see but yet another slick.

In 2008 Taylor Energy set aside over $600 million to pay for work related to the chronic leak that we have covered extensively since it came to our attention in 2010. As you can see in this image collected by the European Space Agency’s Sentinel 2 satellite, as well as in numerous other images we have collected, their work to date doesn’t seem to have stemmed the leak.

Sentinel 2 image collected of the Taylor Energy Site on May 8, 2017.

Which begs the question: why is Taylor suing the government to return the $432 million remaining in trust? That money was set aside for work that is yet to be finished. Why would they think they have earned it back?

Radar Imagery Shows Possible Slick From Oil Platform Off Peru’s Coast

Traditional sail powered fishing craft below Oil Platform 10 on the Peruvian north coast.

Last month we learned of an oil slick that had been sighted off the north coast of Peru in proximity to a number of offshore platforms. The slick was first observed by local fishermen in January and was reported in the pressAt the time SAVIA Perú, which operates platforms in the area, stated that they had inspected their facilities and were not responsible for the leak.

We’ve now had a look at Sentinel-1 satellite radar imagery of the area over the past few months. This imagery, provided by the European Space Agency, does show a possible oil slick extending about 14 miles from one offshore platform on February 3rd. Imagery from the weeks before and after the reported slick may also show some evidence of chronic leaks in the area. 

While initial reports in the press named Platform 10 in the area as the likely source, the imagery shows a possible slick extending from a different platform, Peña Negra TT (PNGR TT), also operated by SAVIA as part of lot Z-2B. A dive support vessel Urubamba is also seen alongside another platform further south (PNGR BB) indicating there may be ongoing maintenance on oil infrastructure in the region.

Sentinel-1 imagery from Feb 3, 2017 showing a possible oil slick extending from a platform on the Cabo Blanco area of Peru’s north coast. Image courtesy of European Space Agency.

Two additional Sentinel-1 images are below, from March 11, 2017 and April 16, 2017.  On March 11th we again see a possible oil slick extending south 1.8 miles from platform PNGR TT. However other larger dark patches also appear on this image making it difficult to interpret. These patches are areas of relatively flat water which could result from a sheen of oil on the water’s surface but could also be from other causes such as blooms of phytoplankton or even an area of heavy rainfall. Recent imagery from April 16th shows no indication of any oil slicks in the area.

Sentinel-1 imagery from March 11, 2017 again showing a possible slick extending south from well PNGR TT. Large dark patches to the west indicate areas of still water. Image of courtesy European Space Agency.

Sentinel-1 imagery from April 16, 2017 shows no indication of possible oil slicks in the area. Image courtesy of European Space Agency.

Along with extensive oil infrastructure, this area has the highest marine biodiversity on Peru’s coast and for that reason has been proposed as part of a new marine protected area. Under proposed legislation oil companies operating in the area could continue provided they complied with environmental regulations. We can’t be certain who was responsible for the oil washing ashore a few months ago but as this imagery shows there is reason for concern regarding this particular platform (PNGR TT) and continued monitoring of oil platforms in this area will be essential if this unique environment is going to be protected.

 

 

 

Imágenes de radar muestran posible derrame de petróleo proveniente de una plataforma de la costa norte del Perú

29 de abril 2017 / por Bjorn Bergman

Tradicionales embarcaciones pesqueras con velas pasan por debajo de la plataforma petrolera 10 en la costa norte de Perú.

El mes pasado nos enteramos de un derrame de petróleo que fue visto en la área de Cabo Blanco en la costa norte de Perú en proximidad a unas plataformas petroleras. El derrame fue observado por primera vez por unos pescadores locales en enero y se informó a la prensa. A el momento SAVIA Perú, que opera plataformas en el área, declaró que habían inspeccionado sus instalaciones y no eran responsables por la fuga.

Ahora hemos examinado imágenes del radar satelital Sentinel-1 durante los últimos meses. La imágen del 3 de febrero, proporcionada por la Agencia Espacial Europea, muestra un posible derrame de petróleo que se extiende a unos 22 kilómetros de una plataforma petrolera. Las imágenes de las semanas anteriores y posteriores a esta fecha también pueden mostrar alguna evidencia de fugas crónicas en el área.

Mientras que los reportes iniciales en la prensa nombraron una Plataforma 10 como la fuente probable, estas imágenes muestran un posible derrame que se extiende desde una plataforma diferente, Peña Negra TT (PNGR TT) también operada por SAVIA como parte del lote Z-2B. También se observó un buque de apoyo de buceo, DSV Urubamba,  junto a otra plataforma más al sur (PNGR BB) lo que podría indicar que se realiza  mantenimiento en la infraestructura petrolera de la región.

Imagen del Sentinel-1 de 3 de febrero 2017 mostrando un posible derrame que se extiende de una plataforma en la área de Cabo Blanco en la costa norte del Perú. Imagen cortesía de la Agencia Espacial Europea.

Dos adicionales imagenes Sentinel-1 están por debajo, del 11 de marzo y del 16 de abril de 2017. En el 11 de marzo volvemos a ver un posible derrame que se extiende 3 kilómetros de la plataforma PNGR TT pero debido a la presencia de unas manchas oscuras más grandes al oeste se torna difícil interpretar lo que aparece en la imagen. Estas manchas oscuras son áreas de agua relativamente plana que podría ser el resultado de la presencia de petróleo en la superficie del agua, pero tambien podria ser de otras causas, como las floraciones de fitoplancton o incluso lluvias fuertes. Un imagen reciente del 16 de abril no indica ningún posible derrame de petróleo en la zona.

Imagen del Sentinel-1 del 11 de marzo de 2017 que otra vez muestra un posible derrame de petróleo que se extiende al sur de la plataforma PNGR TT. Las grandes manchas oscuras al oeste indican áreas de agua mas calmada. Imagen cortesía de la Agencia Espacial Europea.

Imagen de Sentinel-1 de 16 de abril de 2017 que no muestra indicaciones de petróleo en la agua. Imagen cortesía de la Agencia Espacial Europea.

Junto con una extensa infraestructura petrolera, esta área tiene la mayor biodiversidad marina en la costa peruana y por eso se ha propuesto como parte de una nueva área marina protegida. Según la legislación propuesta, las compañías petroleras que operan en la zona podrían continuar siempre que cumplieran con las regulaciones ambientales. No podemos estar seguros de quién fue responsable por el petróleo que llegó a la playa de Cabo Blanco hace unos meses, pero con estas imágenes se puede mostrar que hay motivo de preocupación por una plataforma en particular (PNGR TT) y que el monitoreo continuo de plataformas de petróleo en esta área sería esencial si este ambiente único va a estar protegido.

More Offshore Drilling to Come?

Once again, the federal government is proposing that we expand offshore drilling to new areas in US waters.  Today, President Trump signed an executive order directing the Department of the Interior, which manages our public lands and waters, to review the Obama administration rule that deferred oil and gas leasing along the Atlantic coast and in the Arctic Ocean off Alaska.  People who could be affected by new drilling in those areas should consider that it’s not just the risk of the occasional major disaster they would be facing; it’s the chronic, day-to-day pollution accompanying offshore oil development that is systematically under-reported by industry and the government, the “death by 1,000 cuts” that is so easy to ignore.

Case in point: check out last night’s slick at the site of the chronic Taylor Energy oil spill in the Gulf:

Sentinel-1 radar satellite image showing oil slick caused by a chronic leak of oil from the seafloor at the Taylor Energy site, where an oil platform was destroyed by a hurricane in 2004.  Image acquired 4/27/2017 at about 7pm local time.

This Sentinel-1 image taken on April 27, 2017 shows an oil slick covering an area of 45.5 square kilometers (km2). Our calculations assume that oil slicks observable on satellite imagery have an average thickness of at least 1 micron (one millionth of a meter), so each km2 contains at least 264 gallons of oil. Multiply that by the area of 45.5 km2 and the Taylor slick shown in this image contains at least 12,012 gallons of oil.

This site has been leaking oil continuously into the Gulf since Hurricane Ivan came through and knocked over the Taylor Energy oil platform in September.  That’s September, 2004.  You can review the history of this site and see the hundreds of spill reports received and tracked on our Taylor Chronology page here. Until something is done to stop this leak, we’ll continue to monitor the site and keep you informed.

Real Time Evidence Leads Government of Belize to Reverse Decision

Large, heavy ships are slow to turn around, and so is environmental degradation once it gets going. But last week, public outcry sent a seismic survey vessel packing and halted the first nascent steps of an oil exploration program off the coast of Belize.

Armed with aerial photos and satellite-derived vessel tracks, Belizeans rallied to convince their government to suspend seismic surveying operation just one day after it began. Their protests stand on two premises. One: no environmental impact studies have been conducted. And two: in December 2015, the Government of Belize agreed to ban offshore oil exploration in the Belize Barrier Reef Reserve System, the second largest barrier reef in the world and a UNESCO Heritage site.

Despite these facts, on October 12th, Oceana Belize discovered that seismic testing had been approved for offshore and was intended to take place less than one mile from the reef. Used in deep-sea oil exploration, seismic surveys shoot powerful sonic waves into the water to gauge the geological resources held in the rock layers beneath the seafloor. The shock waves are not only powerful enough to penetrate the seabed, but they travel thousands of miles through the water causing damage to whales, dolphins and manatees as well as scaring fish from important habitats and killing their eggs and larvae.

On Monday, October 17th, SeaBird exploration, the company contracted to conduct the survey, announced that their ship, the Northern Explorer, would begin seismic blast surveys in Belize waters. The Belize Coalition to Save Our Natural Heritage called for the Government to stay the decision to allow seismic testing and to open discussions with the Belizean people, more than 190,000 of whom are economically dependent on the reef’s resources.

The very next day, Oceana posted video and photos on Facebook showing the Northern Explorer off the coast of Belize with its seismic array already deployed. Jackie Savitz, Oceana’s Vice President for the US and Global Fishing Watch, also reached out to SkyTruth for assistance tracking the vessel’s activities.

SkyTruth’s analyst Bjorn Bergman verified the Northern Explorer’s track based on signals from the vessel’s Automatic Identification System. He sent Oceana images of the track as it traversed an area of ocean around the barrier reef.

Track of the Northern Explorer off the coast of Belize

Track of the Northern Explorer off the coast of Belize

In combination with photos and videos, the satellite tracks served as a powerful motivator on social media and helped galvanize opposition to the survey operation. “SkyTruth got us the real-time information, which is what we needed to make timely decisions,” Savitz says, “and to communicate with the government to make sure they understood that we knew what was happening.”

On October 20, two days after the ship began operations, the government of Belize issued a stop work order and published the following statement:

Based on multiple concerns raised by concerned citizens regarding the seismic survey currently being conducted in the deep offshore of Belize as well as the fact that extensive consultation with a wider ground of stakeholders did not occur prior the commencement of the survey, the Government of Belize (GOB) has decided that it will suspend seismic operations until such consultations can be conducted. Accordingly, the Geology and Petroleum Department will inform the ship that they are to cease seismic operations immediately.

That same day, SeaBird exploration announced that they were returning their vessel to port to prepare to leave Belize. “The fact that the Belizean government stopped the seismic blasting when the public was informed is a classic example of how transparency can actually lead to improved ocean conservation,” says Savitz.

 

Impact Story: Chevron Spill May Have Reset the Tone for Oil Boom in Brazil

chevron_post

2011 turned out to be both a banner year for Brazilian oil exploration and a big eye-opener for the people of Brazil. Fueled by the discovery of 19 new oil and gas reserves and hungry for the spoils, big multi-national companies poured billions of new investment dollars into the South American nation.

Most Brazilians expressed little concern over the potential safety risks of the offshore boom. But then SkyTruth president John Amos noticed an inconspicuous report of a seemingly insignificant oil leak buried in the daily cycle of business news.

On November 8, 2011, Reuters reported that Brazil’s oil regulator, the National Petroleum Agency (ANP), was investigating an offshore oil leak near Chevron’s Frade field, 230 miles from the coast of Rio de Janeiro. According to the report, Chevron was checking to see if oil was leaking from a crack in the seafloor.

When John reviewed satellite photos of the area, he saw a slick originating near an exploratory drilling site that extended for 35 miles and covered about 180 square kilometers. By his estimates the sheen on the water represented about 47,000 gallons of oil.

Three days later it had grown to 56 miles in length, and Chevron had declared it a natural seep unrelated to their drilling activities. “It is possible, but call us skeptical,” John posted on our blog. “From my previous years working as an exploration geologist I know there are natural seeps off Brazil. But I’ve never seen a natural seep create a slick this large on a satellite image.” What’s more, comparisons with historical satellite photos showed the slick had not been there before.

Over the following days we watched the spread of oil on the water’s surface. While Chevron maintained that it was natural and estimated a leak rate of 8,400 to 13,860 gallons (200 -330 barrels) per day, John posted satellite images that hinted at a much bigger problem. By his analysis the spill was leaking 157,000 gallons (3,700 barrels) per day. That was more than ten times the official estimate.

John’s reports and the indisputable images he posted gained international media attention,  spurred a vigorous discussion on our site, and led to a public outcry in Brazil.

Unable to hide the true nature of the spill, Chevron came under scrutiny from Brazilian legislators and state agencies, and the tone of their official story began to shift.

Under pressure for more transparency, the oil and gas giant eventually conceded they had lost control of a well. They claimed the pressure of the reservoir had exceeded their expectations and forced oil up through fissures in the seafloor.

Kerick Leite who was working for ANP in offshore inspections at the time reflects on the situation this way: “In my opinion, if were not for SkyTruth’s independent assessment of the spill existence and size, I believe the Chevron Spill would have been dismissed as a minor one,” says Leite, “maybe even a natural seep, as initially reported, and remain mostly unknown by the public even today.”

According to the New York Times, Brazil’s former environment minister, Marina Silva, said “This event is a three-dimensional alert to the problems that may occur.” She told the Times that the spill served as a warning just as Brazil was preparing to expand its oil production and exploit its tremendously rich presalt reserves—an extremely complicated process because the presalt lies in 10,000 feet of water beneath thick layers of sand, salt and rock.

As a result of the spill and Chevron’s misleading response, the ANP banned the company from all drilling activities in Brazil onshore and off, pending a full investigation. After lengthy court battles, the company ended up paying  24 violations, and the company paying $17 million in fines to the ANP, more than $18 million to the Brazilian Ministry of the Environment, and $42 million to settle civil lawsuits.

What’s more, it emphasized how small the playing field is in the deepwater oil and gas drilling industry. As we learned through our Twitter followers, the drilling contractor on the job had been Transocean—the same company involved in the disastrous BP / Deepwater Horizon spill in the Gulf of Mexico just a year earlier. Brazil dodged a bullet with this accident, but the new understanding of how bad it might have been made Brazilians pay attention.

“It was a wake-up call,” said John. “These are multi-national organizations. The same contractors are working for most of the major name-brand oil companies. This kind of thing can happen anywhere.” Chevron’s reluctance to claim culpability and their delayed response to the spill drove home the need for diligence in regulation and enforcement by Brazilian authorities.

Leite said the spill has led to increased public awareness and concern over safety in the oil and gas industry in Brazil that persists today. “I believe the issue of offshore safety now has more priority than before the chevron spill,” he says. “Back when I still worked at the ANP sector dedicated to environmental issues and operational safety, it had around 16 to 18 servants. Today there are around 40 servants dedicated to it.”

It was a full year before Chevron was allowed to resume doing business Brazil. During that time, a significant portion of the company’s global investments remained inaccessible to them. We hope the loss of profits, over and above the fines levied by Brazilian authorities, will provide incentives for Chevron to do a better job and will send a message to other oil and gas companies. Accidents can no longer be hidden or brushed aside. Chevron’s Frade field spill demonstrated that a satellite image can be worth a thousand words — and in this case, millions of dollars.

 

Impact Story: BP Spill — Using Science to Hold BP and Federal Regulators Accountable

bp_story_slider

Within a day of the April 20, 2010 explosion on BP’s Deepwater Horizon drill rig in the Gulf of Mexico, we began our high tech surveillance of the spill. Examining satellite images and aerial survey data, SkyTruth quickly became a leading source of independent, unbiased information on the size and scope of the disaster.

It was the largest oil spill in the nation’s history, releasing almost five million barrels of oil into the Gulf of Mexico. As bad as it was, it could have been even worse. Had BP continued to downplay the extent of the disaster, delaying mobilization of the appropriate response, it may have taken even longer than the 87 days it took to cap the well. Our work challenged the official story, spurred government science agencies to get off the sidelines,  and opened a public dialogue about the magnitude of the risk posed by modern offshore drilling..

Throughout the spring and into mid-summer of 2010, as BP’s disabled well continued to pump oil into the Gulf, SkyTruth president John Amos was quoted in hundreds of news reports, and his interpretation and analysis of the raw imagery helped policy makers, the press and the general public make sense of events as they unfolded.

SkyTruth also played a vital watchdog role. One week after the accident, we raised concerns that the amount of oil spilling into the Gulf was likely much higher than the 1,000 barrels-a-day estimated by BP and repeated by government officials. The New York Times and other media outlets picked up the analysis published on the SkyTruth blog on April 27. The next day, government officials publicly broke ranks with BP and raised its estimate to 5,000 barrels a day, the amount we had initially calculated.

John and other independent experts kept the issue in the headlines by presenting new estimates of 20,000 and then 26,500 barrels per day as new images and data became available, leading the public to question whether BP was low-balling the spill rate. On May 4th, the company privately acknowledged the possibility that the well was likely gushing as much as 60,000 barrels of oil a day, 10 times more than the government had previously estimated.  (Later, the government’s scientific teams concluded that the higher estimate was closer to the truth; they estimated that 53,000 barrels were leaking each day immediately before the well was capped on July 15.)

image gallery

While NASA and the governments of several foreign countries made their satellite images freely available, without organizations like SkyTruth to interpret those images, the public may have never known the true impact of the spill.

Equally important, we invited people directly into the conversation. Tens of thousands visited our website, blog, Twitter and Facebook pages. During the first ten days of June, for instance, our Blog received more than 70,000 visits – 25,000 in a single day. Meanwhile, our Oil Spill Tracker site, deployed on the fly in the first days of the spill, allowed Gulf residents to act as citizen journalists posting commentary and observations, as well as photos and videos of oil awash on the beaches and petroleum-drenched wildlife.

Oceanographer Ian R. MacDonald, who collaborated with the organization during the three-month Gulf spill and an earlier one in Australia’s Timor Sea in 2009, likens SkyTruth’s mission to that of “a fire truck.”

“When there’s an emergency, SkyTruth is there,” says MacDonald, a professor at Florida State University and one of the world’s foremost experts in remote sensing of oil slicks. “From the beginning of the BP spill to the end, SkyTruth was a public source of very timely raw satellite images and interpreted products, as well as a thoughtful commentary that pulled in the views of other people.”