Transshipment in the Fishing Industry Getting a Critical Look

Our collaboration with Global Fishing Watch on the problem of transshipment at sea in the fishing industry is at the forefront of a growing movement to take a critical look at this practice, which is increasingly regarded as a key driver of overfishing, and an enabler of illegal fishing and other fisheries crime including crew enslavement. Our work is funded by the Walton Family Foundation and being led by Bay-area skytruthers Aaron Roan and Nate Miller.

Some hot-off-the-presses resources on this issue:

A new Walton Family Foundation blog post on our work — How Big Data is Helping in Battle Against Illegal Fishing: Satellite Monitoring Tracks ‘Pervasive Problem’ of Global Transshipments

Just-published research concluding transshipment at sea should be banned to curb illegal fishing — Potential Ecological and Social Benefits of a Moratorium on Transshipment on the High Seas

SkyTruth collaboration with DigitalGlobe to target transshipment with high-resolution satellite imagery — Satellites Leave No Place to Hide for Rogue Thai Fishing Fleet

Worldview-3 satellite image of likely transshipment courtesy DigitalGlobe.

Oceana report — No More Hiding at Sea: Transshipping Exposed

SkyTruth + Global Fishing Watch report, map and dataset showing 5,000 likely transshipment events over four years, detected using vessel tracking data — The Global View of Transshipment: Preliminary Findings

 

SkyTruth CTO: Paul Woods

When Paul Woods moved to Shepherdstown, West Virginia, SkyTruth’s home base, he was looking to get away from the Washington, D.C. area where we had been consulting in the tech industry during the dot com boom. His goal had been to find a slower pace and a more soul-satisfying lifestyle than the world of maximizing profit margins through software development. Now, he’s setting off to help save the oceans by revolutionizing the way the fishing industry works.

As the Chief Technology Officer at SkyTruth, Paul was instrumental in bringing Global Fishing Watch into being. [You can read about that here] Now, the platform we developed for identifying and tracking every commercial fishing vessel on the oceans is spinning off into an independent non-profit organization with Paul at the helm. As the interim CEO of Global Fishing Watch, Paul will be guiding the new organization through the transition. While we’re still keeping him in the fold, we thought it was a good time to sit down for a brief reflection on his path, his time at SkyTruth and a look into what’s next.

It’s a small town, so I guess when you landed in Shepherdstown in 2001, it was only a matter of time before you and SkyTruth found each other. How did you get involved?

It’s true just about everybody in Shepherdstown knows SkyTruth. When I met John (SkyTruth President, John Amos), I was working with another company, but I did a few side projects for SkyTruth. I also joined the board as technology advisor. Then, as the other work was winding down and I was looking for the next thing, I realized I just got a lot more out of the SkyTruth stuff than I did out of creating products to maximize clicks or streamline business processes.

In 2010, when the Deepwater Horizon spill happened, I helped John set up a rapid response website. Of course the whole oil spill incident opened an opportunity for growth at SkyTruth, and I realized I could apply my skills in the stuff I really like doing directly to issues that made a real difference in the world. That kind of direct application to saving the environment is so much more satisfying than just writing a check or writing a letter to your congressman.

By 2013, I came on full time, and one of the first projects we did was SkyTruth Alerts, which is still in use today.

I’m sure it’s rewarding to see Global Fishing Watch mature into its own organization. Do you have any reflections to share as you look back at your time at SkyTruth?

Over the years I’ve been working on many different projects at SkyTruth that have been deeply rewarding to me. Now that one of those projects has gotten big enough that it requires all of my time and attention to keep it running, which is enormously exciting.

What are your hopes for the future:

Clearly my immediate hopes and dreams are focused on the continued success and growth of Global Fishing Watch. I hope to see Global Fishing Watch arrive at a long term sustainable model that will propel its growth beyond me and be wildly successful at making fishing sustainable and helping save the oceans.

Personally, I guess I’m always looking for the next thing. I’m a start-up guy. That’s what I do. It’s what I like to do, so I guess my hope is that there will be another Global Fishing Watch around the corner a few years from now —another project with the same great impact and the same great opportunity to make the world a better place, and I’ll get to be involved in it. There’s a good chance that project is in its infancy right now at SkyTruth.

If you could see any place in the world from space, where would it be?

Anyplace? Well, we have recently detected new planets only four-and-a-half light years away, and at least one of them potentially has liquid water on it. The surface of Proxima Centauri B. That’s my first answer.

Great answer. What about here on Earth. If you could aim the SkyTruth “eye” where would you aim?

What would be really fantastic to see from space would be the bottom of the ocean, the sea floor. Unfortunately we can’t do that right now, but I think that would be the place I’d want to see.

A Closeup Look at Leasing and Drilling: Allegheny County, Pennsylvania

Up to this point, Allegheny County in southwestern Pennsylvania has been mostly spared from much of the fracking boom spanning that state. This may change however, as oil and gas companies have been systematically leasing property around the county for potential drilling.  Usually it’s hard to get a handle on the magnitude of this threat, since leases on private property are generally difficult to discover.  Fortunately for the public (us included), our friends at FracTracker Alliance built the Allegheny Lease Mapping Project: an interactive online map showing land parcels leased or contracted to oil and gas companies.  Individual parcels of land that have been tied to oil and gas records can be selected to pull up a variety of information about that parcel.  Users can explore the map to see where a parcel of leased land is located relative to homes, schools, bodies of water, parks, and other sites of interest. This tool is meant to help citizens, communities and policymakers make informed decisions about zoning, land use, and future oil and gas development in the region. 

We thought it would be useful for folks to see where all the oil and gas leases are in the county, relative to the Marcellus Shale gas drilling and fracking that has already happened.  FracTracker graciously provided their dataset, and we filtered it to only show parcels tied to an “active” lease.  Here is the result.  Properties with an active lease are displayed in green. Those that have experienced some drilling activity since the Marcellus boom began a decade ago, are shown in red:

Active leases (green) in Allegheny County, PA. Active leases that have experienced some drilling activity since 2005 shown in red. Click to enlarge.

Though much of Pennsylvania that overlies the Marcellus Shale has seen extensive fracking development, most of Allegheny County hasn’t yet had any of this modern drilling with hydraulic fracturing. But the large area under lease should give residents throughout Allegheny County some concern:  a significant amount of drilling could be in their future, and drilling sites could be built uncomfortably close to where people live and work. The average size of a well pad is 3-5 acres, potentially bigger than a football field or even the deck of an aircraft carrier. In this illustration, hypothetical well pads and access roads (shown in yellow) are placed over existing leases in the northeastern portion of Allegheny County that have not yet been drilled (orange). Many of the leases come close to, or overlap with, existing residential areas:

A portion of northeastern Allegheny County showing active oil and gas leases in orange that have not yet been drilled, in an area of mixed residential, forest, and agricultural land use. Hypothetical drilling sites (“well pads”) and access roads are shown in yellow. Click to enlarge.

 

Detail from above, showing potential proximity of large industrial drilling sites to homes and a school. Click to enlarge.

In the close up above, we see that a potential well pad of typical size dwarfs the high school and football field only 1200 ft away. During drilling the neighborhoods nearby would have to cope with health, safety and lifestyle impacts associated with round-the-clock noise, heavy truck traffic, and degraded air quality, in addition to the longer-term potential for surface and ground water contamination caused by accidental leaks and spills.

It’s our hope that by making this hard-to-access leasing data easily available, folks in Allegheny County will be enabled and inspired to take action to protect their communities.  A big tip ‘o the hat to FracTracker for building and sharing the lease dataset.

Infrastructure Drives Development in the Brazilian Amazon: Highway –> Hydroelectric Plant –> Gold Mine

Big changes are happening in the Brazilian Amazon along a stretch of the Xingu River known as the Volta Grande (Big Bend), where it takes a detour to the south before turning back north to flow into the Amazon River. The region has experienced rapid growth and deforestation following the construction of the Trans-Amazonian Highway (BR 230 ) in 1972, as this pair of images illustrates:

1988:  Satellite imagery showing the Volta Grande region along the Xingu River in Brazil’s Para state. Tendrils of deforestation reveal settlement reaching out into the rainforest along the Trans-Amazonian Highway, built in 1972. Site of the future Belo Monte hydroelectric project is marked for reference. Compare with 2016 image below of the same area.

 

2016:  The same area as shown above in 1988. Considerable deforestation has occurred in the 18-year interval.

Small-scale gold mining has also occurred in this area over the past few decades, peaking in the 1980s. But now a major hydroelectric project, that became operational in 2015 and is still under construction, may be paving the way for a multinational mining company, Belo Sun of Canada, to propose a massive open-pit gold-mining operation.  Some local residents, already negatively impacted by the hydro project, are wary of the gold mining proposal: “I have seen mining companies elsewhere, they take all the wealth and leave craters. We have to think about it ten times over before accepting their projects.”

The mining operation is temporarily on hold, so there’s nothing yet to see.  But Google Earth does have high-resolution satellite imagery showing the construction of the hydroelectric project that may be a key part of the business plan for this mining project.

2014: High-resolution panchromatic (black and white) satellite imagery of the Belo Monte hydroelectric project under construction on Brazil’s Xingu River. Project became operational in 2015. Compare with 2010 image below of the same area.

 

2010: High-resolution satellite imagery showing the site of the future Belo Monte hydroelectric project. Compare with 2016 image above of same area.

As we can see from the detail below, showing a line of trucks at work on the dam in 2014, this is a huge project. And the development sequence illustrated so clearly in this area shows that one big project begets another — from highway, to hydro, to mine.

Detail from 2014 satellite imagery showing trucks at work on part of the Belo Monte hydroelectric project.

The influx of people that results is inexorably transforming the Amazon rainforest.

Into… Ohio?

Mining in Ghana’s Forest Reserves

Gold mining chewing up a forest reserve in Ghana. Satellite image taken in 2015.

The government of Ghana has been giving permission to major multinational mining corporations to conduct surface mining operations, mostly for gold, in areas that had been set aside as forest reserves.  Imagery from Google Earth tells the tale of one of these large operations, the Akyem mine operated by Newmont, a Colorado-based company.  The rapid explosion in size of the operation is obvious.  What’s less apparent is the magnitude of the impact on the adjacent forest reserve.  (To be clear: the mining is obliterating the forest, like surface mining anywhere. But we can’t say how big an area of the reserve has been affected.) We don’t have reliable data defining the boundaries of the reserve, so we can’t quantify the destruction of protected forest due to mining activity.  If we can find GIS-ready data showing the reserve boundaries, we’ll update this post.

Akyem project area, 2003. Pre-mining, moderate-resolution satellite image.

Akyem project area, 2012, two years after mining was approved. High-resolution satellite image.

Akyem project area, 2015.  The mining operation is 6.5 kilometers across and covers a total area of about 10 square kilometers.  High-resolution satellite image. Smoke, tropical humidity, and dust blowing out of the Sahara make it tough to get crisp imagery in sub-Saharan Africa.

 

Fracking: Coming to a Backyard Near You?

Last summer one of our interns, Jerrilyn Goldberg, put together an interactive story map detailing the impact hydraulic fracturing is having on the state of Pennsylvania. The map goes describes the fracking process and its associated risks, and how the growing industry is impacting local communities and the environment. She examines the proposition that switching to a natural gas dominated energy system would mitigate global warming, an important thing to consider when discussing future energy development. You can check out the story map by clicking the image below:

When thinking about fracking and its potential costs and benefits to society, it’s important to remember the impact it will have on the people living near it, not just the country as a whole. The industry touts the amount of potential energy that can be gained from a fracking well relative to its “small” footprint as a major advantage of the process over conventional gas wells and coal extraction. Wells can be permitted and drilled quickly, and with horizontal drilling a single well has access to a large area of potential gas reserves. This also means that wells can pop up at an alarming rate and fit into places that are uncomfortably close to where people live and work. Often times, these wells and their associated infrastructure are within sight and earshot of people’s homes, or even schools, hospitals, and other sensitive areas where people’s health can be put at risk by the 24/7 noise, lighting, diesel fumes, dust, and volatile chemicals emanating from typical drilling sites:

Here in western Pennsylvania we see how close fracking operations can come to people’s homes; the people living in the cluster of houses on the left have to live with the commotion around the well pads a stone’s throw away on a daily basis, and the massive fluid retainment ponds in blue could pose a threat to their health. Click on the image for a fullscreen version.

 

The story in West Virginia is very similar. Here a fracking well pad is less than a football field away from someone’s home. Click on the image for a fullscreen version.

Often times, many of the people that will be affected by a new fracking operation have little to no say in the matter. People are typically powerless to stop construction of a drilling site on a neighboring property, and don’t have any say in where and how the site and associated roads and utilities get built, even though they will still have to deal with the increased noise, light, and traffic, as well as decreased air quality. Health concerns are a major issue because fumes and volatile organic compounds (VOC’s) originating from well pads and fluid retainment ponds have been linked to respiratory and skin illnesses. Fracking operations have also been known to contaminate people’s drinking water by causing methane migration, posing an explosion hazard, and fracking fluids that have made it into the water table can render water unsafe for drinking, bathing, and even laundry. Accidents like fluid spills and well blowouts are an ever-present threat, with the potential to send thousands of gallons of fracking fluid spewing into the air and onto the surrounding landscape, as happened to a well in Clearfield County, Pennsylvania in 2010 that resulted in more than 35,000 gallons of fracturing fluid contaminating the environment. Local campers had to be evacuated from the area. 

Hydraulic fracturing has really taken off in the last decade thanks to horizontal drilling technology. Here, in this section of southwestern Pennsylvania, we can see how rapidly fracking operations have expanded near the Pittsburgh area. The colored dots show the locations of new drilling sites similar to the ones shown in the images above, identified with help from our FrackFinder volunteers.

Because of its location over a particularly rich part of the Marcellus Shale, Pennsylvania has been one of the states most heavily impacted by the fracking boom, but fracking has begun to take off in other states as well. These include Ohio and West Virginia, where along with Pennsylvania you’ve helped us investigate and map drilling activity through our FrackFinder project to quantify the growing impact of fracking in each state, and make the data available to the public and to researchers investigating the impact of fracking on public health and the environment.

Ohio sits partially atop the Utica shale. This map shows the locations of well pads built between 2010 and 2013 in a small part of the eastern portion of the state, and the access roads that were carved out to support them. Click on the image for a fullscreen version.

 

Fracking is relatively new to West Virginia, and the topography is rugged (as shown by this shaded-relief map), so well pads aren’t yet spaced as densely as they are in states like Pennsylvania. The red polygons represent well pad construction, and the dark blue represent retainment ponds. Click on the image for a fullscreen version.

If you’d like to learn more about fracking and how it impacts people and the environment, be sure to check out Jerrilyn’s story map for an in-depth look!

 

Mountain Top Removal in Appalachia: What’s in your backyard?

SkyTruth’s new Mountain Top Removal visualization tool is now available to inspect active mining data for 74 counties in Kentucky, West Virginia, Tennessee and Virginia. The website can be accessed at SkyTruthMTR.appspot.com.

The maps leverage tens of thousands of mining footprints, the result of SkyTruth’s mountain top removal (MTR) research. Before expanding to 74 counties, the orginal work included 59 counties and identified an estimated 445,792 acres of new mining over a 30 year period. This data has already allowed outside organizations and research institutions to directly link MTR to downstream water pollution and related environmental destruction, as well as provide input into numerous health studies and predict where coal companies might go next.

By visiting SkyTruthMTR.appspot.com, you can:

  • Click anywhere on the map to see its active mining history.
  • Visualize a timeline of active mining from 1985 through 2015, with zooming available right down to the rooftop.
  • Draw a rectangle or polygon on the map, then see a breakdown of mining in that area by year and as a percentage of the total selected area. Once drawn, shapes can be edited.
  • Click on one of the 74 counties and see the total active mining for that county by year.
  • Use standard Google maps for a baseline, then overlay with one of SkyTruth’s composite images for any year from 1985 through 2015. These images combine the best satellite photos for each year into a single layer.

Active Mining by County, 1985-2015

West Virginia

County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015
Boone 504 322658 6022 7291 12395 18663 24094 26392 24520
1.87% 2.26% 3.84% 5.78% 7.47% 8.18% 7.60%
Braxton 517 330904 1 1 2 1 1 1 0
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Cabell 289 184699 296 232 331 401 346 385 296
0.16% 0.13% 0.18% 0.22% 0.19% 0.21% 0.16%
Clay 344 220460 838 717 1869 3667 4538 4617 3261
0.38% 0.33% 0.85% 1.66% 2.06% 2.09% 1.48%
Fayette 669 428327 3507 4590 5532 4788 5256 5851 5214
0.82% 1.07% 1.29% 1.12% 1.23% 1.37% 1.22%
Greenbrier 1026 656722 1687 2667 2728 2082 1672 2002 2706
0.26% 0.41% 0.42% 0.32% 0.25% 0.30% 0.41%
Kanawha 913 584066 5319 6591 7363 7589 8932 8845 8746
0.91% 1.13% 1.26% 1.30% 1.53% 1.51% 1.50%
Lincoln 440 281358 608 535 1231 3131 3900 5227 5012
0.22% 0.19% 0.44% 1.11% 1.39% 1.86% 1.78%
Logan 456 291882 4711 7502 11617 15342 15911 13389 12469
1.61% 2.57% 3.98% 5.26% 5.45% 4.59% 4.27%
Mason 445 284957 473 700 630 639 611 746 754
0.17% 0.25% 0.22% 0.22% 0.21% 0.26% 0.26%
McDowell 536 342848 3561 3204 3228 5603 5472 6349 6753
1.04% 0.93% 0.94% 1.63% 1.60% 1.85% 1.97%
Mercer 422 269789 557 479 650 722 702 701 771
0.21% 0.18% 0.24% 0.27% 0.26% 0.26% 0.29%
Mingo 425 271892 3574 6425 9440 13173 13310 13020 10881
1.31% 2.36% 3.47% 4.84% 4.90% 4.79% 4.00%
Nicholas 655 419323 3041 6693 6525 7486 9105 11080 7835
0.73% 1.60% 1.56% 1.79% 2.17% 2.64% 1.87%
Pocahontas 943 603797 619 930 829 1570 841 1940 2015
0.10% 0.15% 0.14% 0.26% 0.14% 0.32% 0.33%
Putnam 351 224799 540 522 674 743 784 1006 989
0.24% 0.23% 0.30% 0.33% 0.35% 0.45% 0.44%
Raleigh 610 390716 2365 2310 2752 3888 5452 7500 7619
0.61% 0.59% 0.70% 1.00% 1.40% 1.92% 1.95%
Summers 368 235806 356 308 445 395 520 537 424
0.15% 0.13% 0.19% 0.17% 0.22% 0.23% 0.18%
Webster 557 356552 1258 1388 3519 3976 4811 6348 4986
0.35% 0.39% 0.99% 1.12% 1.35% 1.78% 1.40%
Wyoming 503 321717 2762 2982 2283 5239 6625 6896 5327
0.86% 0.93% 0.71% 1.63% 2.06% 2.14% 1.66%
County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015

Kentucky

County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015
Bell 362 231484 3998 4958 4116 5440 5150 6148 5096
1.73% 2.14% 1.78% 2.35% 2.22% 2.66% 2.20%
Boyd 162 103859 1179 930 829 868 870 816 786
1.14% 0.90% 0.80% 0.84% 0.84% 0.79% 0.76%
Breathitt 496 317413 7938 8100 9495 11239 594 8985 7355
2.50% 2.55% 2.99% 3.54% 0.19% 2.83% 2.32%
Carter 413 264298 1140 723 642 963 929 957 809
0.43% 0.27% 0.24% 0.36% 0.35% 0.36% 0.31%
Clay 472 302157 4169 2050 2267 2582 2091 2222 2140
1.38% 0.68% 0.75% 0.85% 0.69% 0.74% 0.71%
Clinton 206 131821 112 142 168 360 384 399 427
0.08% 0.11% 0.13% 0.27% 0.29% 0.30% 0.32%
Elliott 236 150845 860 404 244 220 361 432 371
0.57% 0.27% 0.16% 0.15% 0.24% 0.29% 0.25%
Estill 256 164010 525 654 637 648 629 631 639
0.32% 0.40% 0.39% 0.40% 0.38% 0.38% 0.39%
Floyd 396 253732 4101 4999 5267 5582 5091 5568 5037
1.62% 1.97% 2.08% 2.20% 2.01% 2.19% 1.99%
Greenup 355 227162 1017 1477 1203 1115 1419 1080 863
0.45% 0.65% 0.53% 0.49% 0.62% 0.48% 0.38%
Harlan 469 300134 3243 4571 3754 5489 6060 7879 7102
1.08% 1.52% 1.25% 1.83% 2.02% 2.63% 2.37%
Jackson 347 222163 1223 741 515 546 634 730 490
0.55% 0.33% 0.23% 0.25% 0.29% 0.33% 0.22%
Johnson 265 169528 1274 1169 924 1209 1692 1902 1671
0.75% 0.69% 0.55% 0.71% 1.00% 1.12% 0.99%
Knott 353 226208 6049 6880 9521 12541 7056 13019 11285
2.67% 3.04% 4.21% 5.54% 3.12% 5.76% 4.99%
Knox 389 248682 1586 1187 962 1317 1278 1968 1574
0.64% 0.48% 0.39% 0.53% 0.51% 0.79% 0.63%
Laurel 444 284452 3448 1269 1084 1232 1284 1243 1019
1.21% 0.45% 0.38% 0.43% 0.45% 0.44% 0.36%
Lawrence 421 269377 2290 1458 1055 1222 2333 2298 1997
0.85% 0.54% 0.39% 0.45% 0.87% 0.85% 0.74%
Lee 212 135435 630 640 701 564 525 375 353
0.47% 0.47% 0.52% 0.42% 0.39% 0.28% 0.26%
Leslie 405 259372 4544 3850 5475 8136 8551 10205 8857
1.75% 1.48% 2.11% 3.14% 3.30% 3.93% 3.41%
Letcher 340 217405 4761 5154 5305 7991 7012 5517 4465
2.19% 2.37% 2.44% 3.68% 3.23% 2.54% 2.05%
Lewis 496 317299 495 558 365 481 487 517 493
0.16% 0.18% 0.12% 0.15% 0.15% 0.16% 0.16%
Magoffin 310 198142 3032 1465 1495 1869 1691 3730 2984
1.53% 0.74% 0.75% 0.94% 0.85% 1.88% 1.51%
Martin 231 147784 5799 6221 6463 10294 10289 7667 3939
3.92% 4.21% 4.37% 6.97% 6.96% 5.19% 2.67%
McCreary 432 276630 1774 1358 1055 1012 1058 1071 892
0.64% 0.49% 0.38% 0.37% 0.38% 0.39% 0.32%
Menifee 206 132045 171 267 242 215 321 299 257
0.13% 0.20% 0.18% 0.16% 0.24% 0.23% 0.19%
Morgan 384 246009 1374 614 520 512 680 913 726
0.56% 0.25% 0.21% 0.21% 0.28% 0.37% 0.30%
Owsley 199 127155 709 741 542 627 580 803 576
0.56% 0.58% 0.43% 0.49% 0.46% 0.63% 0.45%
Perry 343 219685 8067 10388 11931 15369 1596 16104 11658
3.67% 4.73% 5.43% 7.00% 0.73% 7.33% 5.31%
Pike 790 505304 8470 8679 13987 24058 25448 20373 13869
1.68% 1.72% 2.77% 4.76% 5.04% 4.03% 2.74%
Powell 180 115512 178 342 338 371 406 385 345
0.15% 0.30% 0.29% 0.32% 0.35% 0.33% 0.30%
Pulaski 678 434030 1542 1531 1223 1114 1111 1086 1056
0.36% 0.35% 0.28% 0.26% 0.26% 0.25% 0.24%
Rockcastle 319 204021 1481 810 431 479 388 424 415
0.73% 0.40% 0.21% 0.23% 0.19% 0.21% 0.20%
Rowan 287 183556 111 121 193 302 440 462 355
0.06% 0.07% 0.11% 0.16% 0.24% 0.25% 0.19%
Wayne 485 310457 561 156 173 234 287 325 313
0.18% 0.05% 0.06% 0.08% 0.09% 0.10% 0.10%
Whitley 446 285375 2502 2336 1599 1617 1256 1340 1778
0.88% 0.82% 0.56% 0.57% 0.44% 0.47% 0.62%
Wolfe 223 142802 950 800 1742 1232 904 513 356
0.67% 0.56% 1.22% 0.86% 0.63% 0.36% 0.25%
County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015

Tennessee

County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015
Anderson 345 221107 316 455 487 490 610 648 521
0.14% 0.21% 0.22% 0.22% 0.28% 0.29% 0.24%
Campbell 499 319473 1206 1142 702 779 955 1295 825
0.38% 0.36% 0.22% 0.24% 0.30% 0.41% 0.26%
Claiborne 442 283094 435 432 448 946 1223 1094 718
0.15% 0.15% 0.16% 0.33% 0.43% 0.39% 0.25%
Cumberland 686 439282 1350 1442 1173 1713 1526 1641 1418
0.31% 0.33% 0.27% 0.39% 0.35% 0.37% 0.32%
Fentress 500 319842 1118 1360 1332 1602 1690 1290 1173
0.35% 0.43% 0.42% 0.50% 0.53% 0.40% 0.37%
Morgan 524 335123 1046 1200 1226 1514 1102 940 1191
0.31% 0.36% 0.37% 0.45% 0.33% 0.28% 0.36%
Overton 436 278734 393 509 591 638 682 831 802
0.14% 0.18% 0.21% 0.23% 0.24% 0.30% 0.29%
Pickett 175 111996 101 87 137 162 197 179 157
0.09% 0.08% 0.12% 0.14% 0.18% 0.16% 0.14%
Putnam 403 258163 329 325 407 490 641 694 727
0.13% 0.13% 0.16% 0.19% 0.25% 0.27% 0.28%
Roane 396 253538 546 583 514 615 711 720 665
0.22% 0.23% 0.20% 0.24% 0.28% 0.28% 0.26%
Scott 534 341784 1922 1608 1081 1244 1260 1262 1119
0.56% 0.47% 0.32% 0.36% 0.37% 0.37% 0.33%
County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015

Virginia

County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015
Buchanan 505 323299 3609 3320 2946 4818 6497 8034 7206
1.12% 1.03% 0.91% 1.49% 2.01% 2.49% 2.23%
Dickenson 334 213957 1562 1613 1574 2620 2508 2432 2638
0.73% 0.75% 0.74% 1.22% 1.17% 1.14% 1.23%
Lee 438 280567 625 1030 1099 1506 1419 1614 1331
0.22% 0.37% 0.39% 0.54% 0.51% 0.58% 0.47%
Russell 478 305659 1313 1024 1309 2032 1831 1814 1395
0.43% 0.34% 0.43% 0.66% 0.60% 0.59% 0.46%
Scott 540 345410 531 292 642 696 774 688 537
0.15% 0.08% 0.19% 0.20% 0.22% 0.20% 0.16%
Tazewell 521 333400 1135 912 866 1147 1205 1841 1836
0.34% 0.27% 0.26% 0.34% 0.36% 0.55% 0.55%
Wise 413 264483 3122 3557 6484 10749 15587 15944 11851
1.18% 1.34% 2.45% 4.06% 5.89% 6.03% 4.48%
County Sq Miles Acreage 1985 1990 1995 2000 2005 2010 2015